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Figure 1: San Miguel triangle scene geometry and reflective spheres rendered using BVHs. We evaluate the throughput of the primitive
intersect routine when one BVH is used per primitive type, and when packing triangles and spheres into a single BVH and using compile
time polymorphism to determine the primitive type during traversal.

Abstract

Reducing the amount of conditional branching instructions in innermost loops is crucial for high performance code on con-
temporary hardware architectures. In the context of ray tracing algorithms, typical examples for branching in inner loops are
the decisions what type of primitive a ray should be tested against for intersection, or which BRDF implementation should be
evaluated at a point of intersection. Runtime polymorphism, which is often used in those cases, can lead to highly expressive but
poorly performing code. Optimization strategies often involve reduced feature sets (e.g. by simply supporting only a single geo-
metric primitive type), or an upstream sorting step followed by multiple ray tracing kernel executions, which effectively places
the branching instruction outside the inner loop. In this paper we propose C++ compile time polymorphism as an alternative
optimization strategy that does on its own not reduce branching, but that can be used to write highly expressive code without
sacrificing optimization potential such as early binding or inlining of tiny functions. We present an implementation with modern
C++ that we integrate into a ray tracing template library. We evaluate our approach on CPU and GPU architectures.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

Real-time ray tracing is an active research topic since the time
that personal computers were equipped with multi-core CPUs with

single instruction multiple data (SIMD) support and coprocessor
cards for graphics operations. In the early days of real-time ray
tracing, applications were hand tailored and employed algorithmic
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optimizations and micro optimizations that were specific to the re-
spective target platform. Typical optimizations for x86 platforms
comprised the use of SIMD compiler intrinsics and intricate data
layouts for types that are used in inner loops, such as triangles or
surface properties [Wal04]. Early GPU ray tracers used the frag-
ment stage of the rasterization pipeline to implement ray object
traversal [PBMH02]. Due to hardware and software advances in
areas like GPGPU, ray tracing libraries have since evolved and
provide expressive APIs that help the application programmer to
devise real-time ray tracing algorithms by supplying kernel opera-
tions such as acceleration data structure traversal [WWB⇤14].

Branching operations are however still costly on most contem-
porary hardware platforms. Unfortunately, many ray tracing algo-
rithms involve branching in innermost loops. This happens e.g. at
the primitive intersection stage when deciding which primitive type
is being processed, or at the shading stage, when deciding for the
appropriate surface property type pertaining to an intersection po-
sition. More examples include multi-channel ray casters for direct
volume rendering, with support for different texture types per chan-
nel (e.g. 8-bit per channel vs. 16-bit per channel), or a path tracer
with direct light sampling and support for different light types.
Whenever the decision which instructions and data segments are
loaded from main memory to registers for further processing de-
pends on the type of a data object, we will in this paper refer to the
operation as branching based on type ids.

CPUs contain branch prediction units that in general mitigate the
costs of conditional statements in code. No matter how intricate the
algorithm that implements the branch prediction logic, such an ap-
proach will however only work if branching behavior is coherent
to some extent. Branching on CPUs will typically result in SIMD
unit starvation. If packets of rays are traversed through a hierarchi-
cal data structure containing primitives, and if neighboring rays in
the packet process different primitive types, the respective SIMD
unit dedicated to the first primitive type will be deactivated using
masking operations when the second primitive type is processed.
GPUs typically employ threading models where program execu-
tion is not completely independent, but where multiple threads are
combined to warps that execute code in lockstep [NBGS08]. This
thread execution model implies that threads have to wait inactively
for other threads in the warp to execute conditional code blocks.
Hardware platforms that rely on caches will in general be sensitive
to conditional branching. Conditional branching will have a neg-
ative impact on instruction cache utilization. Moreover, branching
over type ids often implies that data objects need to be fetched from
different regions of memory, which will typically result in low data
cache utilization.

Object oriented programming provides polymorphism as an ex-
pressive means to encapsulate code for branching over type ids.
Typical object oriented ray tracers supply abstract base types for
primitives and surface properties, which can be extended by the ap-
plication programmer using inheritance [Wil93, PJH16]. This has
however several downsides from a runtime performance perspec-
tive. On the one hand, types that support virtual inheritance typ-
ically carry a vtable pointer with them, which is implementation
specific and counterproductive when devising cache friendly data
layouts. Furthermore, with runtime polymorphism, the application

programmer can generally extend a ray tracing library from her
own C++ module. This inhibits early binding, which is a crucial
optimization for high performance C++ code.

Compile time polymorphism (CTP) (which is sometimes also
referred to as static polymorphism [MS00]) is a means to imple-
ment branching without having to explicitly specify every possible
branch in library code. The latter would also not be practical be-
cause the application programmer then cannot extend the library
code. CTP is a generic programming technique that allows for com-
piler optimizations such as inlining and early binding. CTP requires
the application programmer to provide an instantiation at compile
time. One downside of this approach when compared to runtime
polymorphism is that the instantiation and thus every possible in-
carnation of the static polymorphic type needs to be known when
the application (but not the library) is being compiled. We pro-
pose CTP as an expressive means for the application programmer
to extend ray tracing library code and compare the runtime perfor-
mance of this approach with traditional optimization approaches.
Due to modern C++ support by APIs such as NVIDIA’s CUDA or
AMD’s ROCm, CTP can also be used in GPGPU code. When using
GPGPU APIs, runtime polymorphism is only available for locally
created objects and not for objects that were created on the host,
because CPU and GPU typically do not share address spaces.

The paper is structured as follows. In Section 2 we review re-
lated work from the field of ray tracing API design. In Section 3
we briefly review the CTP concept and modern C++ language fea-
tures that help to devise expressive APIs. In Section 4 we describe
how to integrate the CTP concept into a generic C++ ray tracing
library. In Section 5 we evaluate our approach and in Section 6 we
conclude this publication.

2. Related Work

Over the last couple of years, a variety of approaches to design ray
tracing APIs have been proposed. The Embree ray tracing kernel
library [WWB⇤14] e.g. basically only implements the primitive in-
tersection stage of a typical ray tracing pipeline through an ANSI-
C function interface and has builtin support for only a number of
limited primitive types, which can be extended by the application
programmer by means of a callback mechanism. NVIDIA’s OptiX
library [PBD⇤10] provides access to a static set of pipeline stages,
e.g. the primitive intersection stage, and the shading stage, where
custom programs can be supplied to define the behavior at the re-
spective stage. PBRT [PJH16] and Mitsuba [Jak10] are research
oriented, physically based rendering systems that follow an object
oriented programming approach but are both not targeted towards
real-time ray tracing. Generic ray tracing APIs like RTfact [SG08]
or Visionaray [ZWL17] typically provide default implementations
for types and functions that are often used, and allow for extending
those by implementing so called customization points. Customiza-
tion points are usually specified using Concepts, which in turn spec-
ify a set of traits a type must adhere to so that it can be used with
the library interface. RTfact and Visionaray provide numerous cus-
tomization points to extend the functionality of the libraries in a
generic fashion. Those involve, amongst others, primitive intersec-
tion, shading, light sampling, and texturing. A diverging approach
to using general purpose programming languages are domain spe-
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cific languages (DSLs) [PM12, LBH⇤15], which may handle poly-
morphism and binding differently than C or C++. The choice of
C++ API has a strong influence on the way that conditional branch-
ing in shading or intersection code translates to machine code. APIs
that only facilitate querying rays for intersections with triangles in
a bounding volume hierarchy completely avoid branching during
primitive intersection and place the burden of handling branching
in shading code on the shoulders of the application programmer.
Object oriented, polymorphic APIs trade branching performance
for better code readability. Generic libraries allow the application
programmer to decide for herself how branching is best handled in
code.

Regardless of the API, it is generally best to avoid unnecessary
branching at all. With ray tracing, there is typically a trade-off be-
tween branching in innermost loops, and the costs of introducing an
additional constant overhead e.g. for sorting rays or material IDs
for coherence. Garanzha and Loop [GL10] propose a framework
where secondary rays are sorted by projecting ray origins to cells
of a virtual regular grid, and by quantizing ray directions into sec-
tors on the unit sphere. Áfra et al. [ÁBWM16] concentrate on co-
herence for shading calculations and therefore process ray bounces
in a path tracing pipeline in batches. Between bounces, they sort
ray IDs by the material IDs of the hit points from the preceding
primitive intersection phase. Breadth first processing of incoher-
ent ray paths is especially useful on GPUs. GPUs have no branch
prediction units and execute threads in a SIMD fashion with very
wide vectors (those are referred to as warps in CUDA related doc-
uments and as wavefronts in documents related to the OpenCL pro-
gramming language). Laine et al. [LKA13] compared breadth first
and depth first path tracing and proved the superiority of the wave-
front approach over megakernels on contemporary GPU architec-
tures. Wavefront approaches are especially beneficial on GPUs be-
cause they reduce the register pressure on individual compute ker-
nels and thus allow for higher occupancy of the GPU cores. Both
Laine et al. as well as Áfra et al. concentrate on scenarios where
the shading phase makes up for a significant portion of the render-
ing algorithm, which is typically true with complex, layered ma-
terials [JdJM14] or texture types that are costly to evaluate. Davi-
dovič et al. [DKHS14] conduct a thorough survey of several global
illumination algorithms implemented with CUDA and the freely
available bounding volume hierarchy (BVH) intersection frame-
work that was published in conjunction with [AL09]. They system-
atically evaluate several implementations and compare megakernel
approaches against approaches that involve multiple kernel calls to
render a frame. They observed that separate compute kernels for the
shading phase and possible coherency sorting are beneficial with
complex materials, but impose too high an overhead when only
simple materials are involved. Coherence is also important to avoid
starvation of large vector units. Interactive thread compaction of
active paths in a GPGPU kernel to avoid starvation of individual
warps was investigated in [Wal11]. The author concluded that the
benefit was negligible and the strategy in some cases even resulted
in a slowdown. Davidovič et al. [DKHS14] also investigate this
matter in their survey paper and use atomic operations to reassign
work units to vector lanes during the execution of general ray trac-
ing kernels. With wavefront approaches, it is possible to perform
the reassignment inbetween kernel calls.

3. Compile Time Polymorphism

In this section we briefly deduce the CTP concept and how to im-
plement a static polymorphic type based on that. Our implemen-
tation relies on support for variadic templates, which were intro-
duced with the (now superseded) ISO/IEC 14882:2011 standard
(short: ISO C++11) [ISO11]. In this paper, we refer to core lan-
guage versions that adhere to the ISO C++11 or newer standard
as “modern C++”. Core language support for variadic templates is
necessary to implement a variant type as it is proposed to be in-
cluded [Nau16] in the upcoming ISO C++17 standard, which is in
draft status at the time of writing.

Variants derive from tagged unions, which basically extend the
concept of ANSI-C unions by storing a tag along with them:

union Data {

Type1 t1;

Type2 t2;

Type3 t3;

};

enum Tag { Tag1, Tag2, Tag3 };

struct TaggedUnion {

Data data;

Tag tag;

};

The tag can then be used at runtime to deduce the correct type id of
the data object:

auto tu = makeTaggedUnion(· · ·);
if (tu.tag == Tag1)

treatAsT1(tu.data);

else if (tu.tag == Tag2)

treatAsT2(tu.data);

else if (tu.tag == Tag3)

treatAsT3(tu.data);

Tagged unions are not useful to design the API of a library be-
cause the number of supported types is static. Modern C++ variadic
templates provide a means to implement a variant type that has a
bit representation for a variable number of internal types. The data
representation for a simple variant type looks as follows:

template <typename ...Ts>

union VariantStorage {};

template <typename T, typename ...Ts>

union VariantStorage<T, Ts...> {

T element;

/

*

Recursion stops when the empty

VariantStorage<> template is

being instantiated.

*

/

VariantStorage<Ts...> nextElements;

};

The variant type itself extends the variant storage type with a sim-
ple integer type id. At runtime, the variadic template parameter is
unfolded to retrieve the index of the type (if present) in the param-
eter pack corresponding to type id:
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template <typename ...Ts>

struct Variant {

VariantStorage<Ts...> storage;

int type_id;

template <typename T>

T

*

as() {

// Reinterpret as type T if type id matches.

if (type_id == index_of(T, Ts))

return reinterpret_cast<T

*

>(&storage);

else

return nullptr;

}

};

(For brevity, we omit the definition of the function index_of(),
which returns the index of type T in the parameter pack Ts.) With
this scheme a list of types is set up that can be statically traversed
with zero runtime overhead using a compile time visitor pattern to
unfold the parameter pack. Application code using variants struc-
turally looks as follows:

struct Visitor {

auto operator()(Type1 t1) {

treatAsT1(t1);

}

auto operator()(Type2 t2) {

treatAsT2(t2);

}

auto operator()(Type3 t3) {

treatAsT3(t3);

}

};

Variant<Type1, Type2> var = makeVariant(· · ·);
applyVisitor(Visitor(), var);

(We omit the definition of applyVisitor(), which traverses
the parameter pack, reinterprets the variant’s storage member
bitwise using Variant::as(), and then calls the appropriate
Visitor::operator() overload.) A variant implementation is
e.g. provided as part of the Boost C++ libraries [boo]. In order
for compatibility with NVIDIA’s CUDA or AMD’s ROCm, and
because support libraries such as Thrust [BH11] do not provide a
variant type as of yet, it may in general be necessary to implement
such a type as part of a utility library module.

4. Application to Ray Tracing

With variants it is easily possible to provide container types that
mimic the behavior of abstract base classes at compile time. We
propose a software interface and have integrated it into the ray trac-
ing template library Visionaray. A casual description of CTP for ray
tracing can be found in [ZWL17], but is however not thoroughly
evaluated with regard to runtime performance overhead. Vision-
aray provides sets of default implementations for primitive inter-
section (triangles using the intersection test from [MT97], simple
quadric types, BVHs which act as compound primitives), material
shading, light sampling, and texture filtering. Visionaray requires

primitives to implement the intersect(Ray, Primitive) customiza-
tion point. Material shading can be customized by supplying cus-
tom material types that encapsulate reflectance distribution func-
tions (BRDFs). Custom materials must supply member functions
shade() and sample(), which invoke BRDF evaluation and numeri-
cal sampling, respectively. Customization of light and texture types
works conceptually similar. We extended Visionaray with custom
types that derive from variants, provide the interface that the re-
spective customization point mandates, and implement the inter-
face functions using the compile time visitor pattern we introduced
above. We exemplarily show pseudo code for the implementations
of a generic material type, which implements a member function
interface to adhere to Visionaray’s material shading and sampling
interface. Note that those types are generic and can e.g. be com-
piled into a GPGPU kernel with the NVIDIA CUDA compiler or
AMD’s HCC compiler.

template <typename ...Ts>

class GenericMaterial<Ts...>

: public Variant<Ts...> {

public:

// Construct variant from concrete material.

template <typename Mat>

GenericMaterial(Mat mat)

: Variant<Ts...>(mat) {}

// Shade interface function.

Spectrum shade(Intersection) {

// ShadeVisitor visits all types in

// parameter pack Ts... and calls

// T::shade(Intersection)

applyVisitor(ShadeVisitor(Intersection),

*

this);

}

// Sample interface function.

Spectrum sample(Intersection, Wi, Wo) {

applyVisitor(SampleVisitor(Intersection,

Wi, Wo),

*

this);

}

};

The GenericMaterial type resembles an abstract base type with an
interface that can be extended by the application programmer, who
instantiates the generic type with custom types as follows.

struct CustomMat1 {

Spectrum shade(Intersection) {· · ·}
Spectrum sample(Intersecion, Wi, Wo) {· · ·}

};

struct CustomMat2 {

Spectrum shade(Intersection) {· · ·}
Spectrum sample(Intersecion, Wi, Wo) {· · ·}

};

CustomMat1 cm1;

CustomMat2 cm2;

// Variant containing CustomMat1

GenericMaterial<CustomMat1, CustomMat2> gm(cm1);
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// Variant containing CustomMat2

GenericMaterial<CustomMat1, CustomMat2> gm(cm2);

Builtin or custom functions for material shading can now be instan-
tiated with the generic material type and will choose the right ma-
terial type to shade or sample at runtime. Branching is executed in
the visitor implementation, which unfolds the respective template
types and invokes the material interface if types match. A type im-
plemented in that way will, similarly to an ordinary polymorphic
type, perform branching to deduce the type stored in the variant
at runtime. The number of types stored in the variant is however
known at compile time, so that early binding optimization is pos-
sible. In contrast to static approaches like tagged unions, the sup-
ported types need not to be known by the developer of the ray trac-
ing library, but by the application programmer using the ray tracing
library.

5. Results

We evaluate the performance impact of using CTP for ray tracing
with incoherent workloads. We are interested in the performance
with regard to the shading operation in a wavefront path tracing
pipeline. GPGPU APIs like NVIDIA CUDA have limited support
for virtual function calls. It is however not possible to create poly-
morphic objects in host memory and then copy those to GPU DDR
memory, because CPU and GPU in general do not share address
spaces. Because of that, shading in a GPU wavefront path trac-
ing pipeline involves either sorting to avoid virtual function calls
(because then the material type is known a priori) or shading on
the CPU. With CTP, it is possible to perform shading on the GPU
without having to sort intersection hit records. We would also like
to know how CTP impacts the intersect operation with bounding
BVHs that contain multiple primitive types for setups like the one
depicted in Figure 1. An alternative strategy involves consecutively
intersecting the ray buffer with one BVH per primitive type. This
reduces branching at the cost of many additional full BVH traversal
operations. When testing on the CPU, we are also interested in the
performance of CTP compared to object oriented polymorphism
(OOP) evaluated at runtime.

5.1. Wavefront path tracer

We evaluate our approach using a wavefront path tracer similar to
the one proposed by Áfra et al. [ÁBWM16]. The path tracer can
be compiled for NVIDIA GPUs with CUDA nvcc, and for CPUs
with a conventional C++ compiler. Ray generation, primitive inter-
section, sorting, shading, active path compaction, and blending are
implemented in separate compute kernels on the GPU and thread-
parallel functions on the CPU. In contrast to Áfra et al., our ker-
nels process single rays in parallel instead of combining rays to
streams. We maintain and update buffers in DDR memory for rays,
hit records from primitive intersection, and shaded pixel colors in
a structure of array (SoA) fashion. We use the Visionaray ray trac-
ing API to implement common tasks such as primitive intersection
with an SBVH [SFD09] and BRDF sampling. Reordering opera-
tions (sorting and compaction) are executed on an index buffer into
the ray, hit record, and pixel buffers. Depending on the modality
we would like to test, the shade kernel is further divided into one

kernel per material type. We are interested in how a single shade
kernel with CTP compares to ordinary OOP using a single kernel,
and to one shade kernel per material type. The latter approach re-
quires a priori subdividing the materials into separate lists (one per
material type) and reordering paths according to the material type
attached to the surface that was hit during primitive intersect before
shading. The single shade kernel cases involve no sorting. For the
case that involves multiple shade kernels, like Áfra et al. we use
counting sort [Knu98] to reorder intersection hit records by mate-
rial types. We use the prefix sum array that is calculated during the
counting sort algorithm execution as offsets into the index buffer
so we can identify the workloads to be processed by the shade ker-
nel in constant time. When compiling for the GPU, we assign each
shade kernel to a separate CUDA stream so that the kernels can be
scheduled concurrently. We found concurrent kernel execution vital
for shading throughput. Note that contemporary NVIDIA compute
architectures limit the number of concurrently executed kernels to
32 [NVI17], which may result in an execution bottleneck in the
event that many shade kernels (e.g. one per material ID) are exe-
cuted. See Figure 2 for an overview of the control flow of the two

Ray generation

Primitive Intersect

Shade

Compaction

Blending

0 1 2 3 4 5 ..
Index Buffer

1 2 8 7 3 5 ..
Index Buffer

Ray generation

Primitive Intersect

Shade Shade Shade

Compaction

Blending

0 1 2 3 4 5 ..

7 2 8 1 3 5 ..
Index Buffer

Ray generation
0 1 2 3 4 5 ..

Index Buffer

Sort material-type
7 2 6 1 4 2 ..

Index Buffer

Figure 2: Compute kernels used to implement the wavefront path
tracer that we use to evaluate shading throughput. Left: single
shade kernel, uses CTP or OOP for materials. Right: one shade
kernel per material type, requires a priori sorting.

implementations. In contrast to Laine et al. [LKA13] and Áfra et
al. we are interested in real-time rather than offline rendering and
thus limit our tests to single layer materials with textures for dif-
fuse color only. A typical workload will comprise shading costs to
be approximately 10% compared to those for primitive intersection.
Such a scenario is untypical for offline rendering involving complex
multi layer materials, but makes sense e.g. to improve rendering fi-
delity in the context of scientific visualization. We acknowledge the
findings by Davidovič et al. [DKHS14] that a wavefront approach
with a separate shading kernel is not optimal for simple materials,
however, in order to be able to faithfully compare with a sorting
pipeline, we opted to employ such a setup for all our tests.
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In order to test the rendering throughput when more than one
primitive type is involved, we either employ multiple consecutive
primitive intersection kernels, or we compile a compute kernel that
intersects the ray buffer with a list of generic primitives organized
using variants. With that scenario we are only interested in inter-
sect throughput because no ray reordering is involved and so the
throughput of the remaining operations is unaltered.

5.2. Test setup

We test on an NVIDIA GeForce GTX 1080Ti GPU system, and on
an Intel Xeon E5-2637 v2 dual CPU system with a total of eight
cores and sixteen threads. We use the NVIDIA Visual Profiler, the
NVIDIA CUDA command line profiler and the Intel vTune profiler
to measure parallel compute throughput, and to ensure that GPU
kernels assigned to separate streams actually execute in parallel.
We use the gcc 5.4.0 and CUDA 8.0 Linux toolchains to compile
our test program.

5.3. Shading throughput

Figure 3: Conference Room and Crytek Sponza Atrium test scenes
comprised of simple, optionally textured, materials: matte material
with Lambertian BRDF, plastic material with a Lambertian and a
Blinn microfacet term, mirror material with perfect specular re-
flection, emissive material with a constant emissive term. We test if
it is beneficial to pack all materials in a single list using CTP or
OOP, or to sort hit points and use one parallel compute kernel per
material type.

In order to measure shading throughput, we render progressive
frames that converge to the 1024 ⇥ 1024 pixel images (Conference
Room and Crytek Sponza Atrium) shown in Figure 3. The setup
involves four material types: a diffuse matte material with a Lam-
bertian BRDF, a plastic material with a diffuse Lambertian and a
glossy Blinn microfacet term, a mirror material with a perfectly
specular term, and an emissive material so geometry can behave
like light sources. We test the throughput of the wavefront path
tracing pipeline described above by either using a single parallel
compute kernel and CTP (or OOP on the CPU) for shading, or by
using a separate compute kernel for each of the four materials. We
report the throughput of the involved compute kernels in Table 1
and execution time for ten reflective bounces in Figure 4. Since
rays are potentially reordered throughout the whole pipeline, and
because reordering for shading during one bounce may affect the

0.00 0.05 0.10 0.15 0.20

Spon./CPU/Sort

Spon./CPU/OOP

Spon./CPU/CTP

Spon./CUDA/Sort

Spon./CUDA/CTP

Conf./CPU/Sort

Conf./CPU/OOP

Conf./CPU/CTP

Conf./CUDA/Sort

Conf./CUDA/CTP

Intersect Sort Shade Compact

Figure 4: Times in seconds needed to execute the per bounce par-
allel compute kernels from Figure 2 in order to render one pro-
gressive frame, one of many that eventually converge to obtain the
images from Figure 3 . We report the accumulated time it takes
to perform ten reflective bounces with the intersect, sort, shade,
and compaction kernels. Throughput results with respect to a sin-
gle bounce can be found in Table 1.

performance of the intersect execution of the ensuing bounce, we
opted to provide results for all per bounce kernels.

5.4. Primitive intersection throughput

San Miguel Conference
Spheres (7,842K triangles) (331K triangles)

1K 5,976K nodes 253K nodes
10K 5,986K nodes 260K nodes

100K 6,047K nodes 328K nodes

Table 2: Footprint for SBVHs containing both triangles and
spheres. For comparison, SBVHs containing only the triangle ge-
ometry of the San Miguel and Conference room scene are com-
prised of 5,971K and 252K nodes, respectively. SBVHs containing
1K, 10K, or 100K spheres are comprised of 675, 6,827, and 68,233
nodes, respectively.

We test the throughput of the intersect kernel when either using
CTP, OOP on the CPU, or an approach with one kernel per primi-
tive type (we refer to this as “kernel restart”). We measure rendering
single progressive frames that eventually converge to provide the
images shown above Table 3. We therefore place uniformly dis-
tributed, reflective spheres inside the San Miguel scene (7,842K
triangles) and Conference Room scene (331K triangles). We ren-
der images with a resolution of 2,560 ⇥ 1,024 pixels. We run our
test with 1K, 10K, and 100K spheres. See Table 2 for an overview
of the footprint of the SBVHs in memory (a tree node consists of
an axis aligned bounding box and integer indices and requires 32
bytes of aligned memory. Note that the number of nodes is not nec-
essarily linearly related to the number of primitives contained in
the SBVH. For the San Miguel model, the construction algorithm
finds a configuration with even fewer nodes for the combined tri-
angle and sphere setup than for the mere triangle geometry. Table 3
presents throughput results for the intersect routine and the various
configurations. We can see that using CTP for intersect on the GPU
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Conference Crytek Sponza
CUDA CPU CUDA CPU

Kernel CTP Sorting CTP OOP Sorting CTP Sorting CTP OOP Sorting
Intersect 56.2 51.8 12.9 12.8 12.5 28.6 26.5 6.55 6.53 6.32

Sort n/a 359 n/a n/a 45.4 n/a 372 n/a n/a 41.6
Shade 362 342 31.6 30.4 22.6 307 272 32.3 29.5 22.9

Compact 586 234 389 395 453 737 183 542 581 685

Table 1: Throughput of the per bounce parallel compute kernels from Figure 2 when either using CTP, OOP, or hitpoint sorting and one
kernel per material type for shading, in million rays per second (Mrays/s). Figure 4 presents accumulated results over ten bounces for the
same kernels in units of time.

San Miguel Conference
CUDA CPU CUDA CPU

Spheres CTP Kernel Restart CTP OOP Kernel Restart CTP Kernel Restart CTP OOP Kernel Restart
1K 9.48 27.3 4.56 3.91 4.33 17.8 81.5 12.6 11.8 10.9

10K 8.78 25.8 4.25 3.63 4.05 13.1 66.5 10.2 9.46 8.72
100K 7.59 21.3 3.97 3.32 3.58 9.52 36.8 7.39 6.67 6.51

Table 3: Throughput in Mrays/s of the intersect parallel compute kernel when combining triangle and sphere primitives in the same ray trac-
ing scene. We compare CTP, OOP (only on the CPU), and storing all primitives in the same SBVH with an approach where we consecutively
intersect ray wavefronts with one BVH per primitive type. We test on the CPU and on the GPU, and with either 1K, 10K, or 100K uniformly
distributed spheres placed inside the boundaries of the triangle geometry.

is prohibitive. Performance decreases by a factor three to four com-
pared to a kernel restart approach. The opposite is however true on
the CPU, where some test cases show a performance increase of
about 10 to 15% compared to kernel restart. CTP is always ben-
eficial compared to OOP, and our results indicate that the impact
of using OOP increases with the number of primitive intersection
tests. The fact that intersect throughput drops so drastically when
using CTP on the GPU is not surprising since this architecture is
particularly ill suited for conditional branching. We find it note-
worthy that the opposite behavior can be observed on the CPU.

6. Conclusions

We have presented compile time polymorphism with C++ vari-
ants as an elegant way to provide an extensible library interface
for small data types that are used in the innermost loops of ray
tracing algorithms. Due to the support for modern C++ on a vari-
ety of architectures, this approach is also applicable to GPGPUs.
Data types implemented with CTP can be “plain old data types”
and can thus be extended to an accelerator over PCI Express using
memory copy operations. The most important benefit for a library
implementation in our opinion is that the number of types the vari-
ant is instantiated with does not need to be known a priori to the
library programmer. We evaluated CTP and tested it against tra-
ditional strategies that involve additional sequential or concurrent

compute kernel executions. We come to the conclusion that CTP
is an option to redesign ray tracing algorithms that are dominated
by memory operations and where additional indirection e.g. due
to sorting outweighs the benefit of more coherent operations and
reduced branching. In certain cases and especially on GPUs, we
however found CTP to reduce throughput by a significant amount.
When to use CTP and when to apply an alternative optimization
strategy that reduces branching in inner loops should in our opin-
ion be tested from case to case. Our tests especially revealed that
on a CPU, in cases where the most time of the ray tracing algorithm
is spent for intersect, preferring CTP over object oriented program-
ming or kernel restart even resulted in a performance increase.

C++ has changed significantly over the last couple of years by
adding elements typical to functional and imperative programming
languages that allow for writing highly expressive code. Modern
C++ compiler infrastructures like LLVM [LA04] are open source,
highly extensible and lay the ground for standards-compliant C++
implementations even on exotic hardware architectures. We have
shown that modern C++ language features can enrich the way real-
time graphics libraries are designed. While such features allow for
writing most expressive code, they however do not make up for
explicitly having to test for runtime performance and can comple-
ment platform specific optimizations, but do not generally render
them unnecessary.
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