
A COMPARISON OF GPU BOX-PLANE INTERSECTION ALGORITHMS
FOR DIRECT VOLUME RENDERING

Stefan Zellmann
Chair of Computer Science

University of Cologne
Cologne, Germany

email: zellmans@uni-koeln.de

Ulrich Lang
Chair of Computer Science

University of Cologne
Cologne, Germany

email: lang@uni-koeln.de

ABSTRACT
In order to avoid load imbalances on the GPU during di-
rect volume rendering, a common scheme was to move
the generation of proxy geometry, that quite often con-
sists of polygons retrieved through box-plane intersections,
from the CPU to the vertex stage of the GPU. Nowadays,
with the unified shader architectures implemented by mod-
ern graphics hardware, usually non of the programmable
stages will starve anymore. Nevertheless, redistributing
calculations for proxy geometry generation from the vertex
stage to the newly introduced geometry stage of the graph-
ics hardware results in some serial computations that can
be performed more finely grained, thus hinting the graph-
ics driver to schedule more tasks in parallel. We propose
different implementations of box-plane intersection algo-
rithms on the GPU that use the vertex- as well as the ge-
ometry stage and compare their performance on modern
graphics hardware.

KEY WORDS
Volume Rendering, Rendering Algorithms and Systems,
Box-Plane Intersection Algorithms, Geometry Programs

1 Introduction

Visualization of large volumetric datasets is an interdisci-
plinary requirement. Meteorologic simulations often result
in huge datasets with many time steps. CT- or MRT scans
produce large amounts of data defined on regular grids that
need to be visualized, while flow simulation results in high-
resolution data with a need for high-quality visualization
methods. Visualization algorithms need to keep pace with
the ever-growing sophistication of measuring devices gen-
erating volume datasets that grow with the 3rd power of
their spatial resolution. High screen resolutions supported
by newer displays produce an even higher impact on the
usually fill rate bound volume rendering algorithms.

One possible categorization differentiates between
image-order and object-order algorithms for rendering of
volume datasets. With image-order algorithms like ray-
casting, sampling is performed per pixel, while object-
order approaches sample the volume using some kind of
proxy geometry that is directly rendered to the framebuffer
by e. g. using rasterization. With modern GPUs, trilinear

interpolation is a cheap operation, which makes GPUs es-
pecially suitable for rendering of volume datasets defined
on regular, three-dimensional grids. Object order algo-
rithms for GPUs usually use a planar proxy geometry that
is parallel to the viewing plane slicing a 3D texture, while
in the image-order case ray-casting could e. g. be imple-
mented in a shader [1]. In both cases, with the fixed-
function graphics pipeline model implemented by legacy
hardware, the workload distributed to the fragment pro-
cessing stage would be inefficiently high compared to the
workload for the vertex stage. Rezk Salama and Kolb [2]
counter this load imbalance by moving the generation of
proxy geometry, which intuitively seems to be a task that
is hard to parallelize, to the vertex processing stage on the
GPU. Modern GPUs typically do not implement the stages
of the fixed-function pipeline anymore. Rather than that,
they nowadays usually provide processing units that are ca-
pable of performing more general computations [3]. Uni-
fied shader units can be used for vertex processing as well
as fragment processing, so that typically non of both stages
gets starved anymore, since a dynamic amount of process-
ing units can be used for the task with the higher work-
load. With graphics APIs exposing even more stages of the
fixed-function pipeline to be programmed in shaders, it is
possible to distribute the workload more evenly, hinting the
GPU to benefit from parallelization to a higher degree.

Proxy geometry generation for volume rendering with
3D texture slicing becomes a bottleneck if either the
amount of sampling planes is unrealistically high, or if
the volume is not represented through one single box, but
through many boxes, as it is e. g. necessary for empty-space
skipping [4]. In that case, the volume is usually still stored
in a single 3D texture uploaded to the GPU, but a data struc-
ture like a more coarsely grained grid or an octree is placed
on top of the volume dataset. This way, in a preprocessing
step whole regions can be identified that do not contain data
relevant for rendering and can thus be skipped. Efficient
empty-space skipping may require many boxes, resulting
in an extensive workload due to box-plane intersection cal-
culations necessary to build up the proxy geometry. The au-
thors from [2] are able to significantly speed up the volume
rendering task by parallelizing the proxy geometry genera-
tion and moving that step to the vertex processing stage of
the GPU. We explore variants of their box-plane intersec-

 Proceedings of the IASTED International Conference
Computer Graphics and Imaging (CGIM 2013)
February 12 - 14, 2013 Innsbruck, Austria

DOI: 10.2316/P.2013.797-019 153

tion algorithm that use the newly added geometry program
features to hint modern GPUs to expose a higher degree of
parallelism and compare our variants to the speedup gained
by the original implementation.

Our paper is organized as follows. In section 2, we
review current and more recent research that relates to our
work. In section 3, we motivate the box-plane intersec-
tion algorithm from [2] our work is based upon. Section
4 presents variants of this algorithm using geometry pro-
grams exposed by modern graphics hardware, while sec-
tion 5 compares our implementations to the reference im-
plementation using performance measurements. The last
section 6 concludes this publication.

2 Related Work

Westermann and Ertl [5] explain how 3D textures can be
exploited to sample volume data using trilinear interpola-
tion. Similar to Dachille et al. [6], the authors use the 3D
texture capabilities to implement object-order direct vol-
ume rendering. The authors furthermore investigate how to
use the 3D hardware to explore the volume using planar as
well as arbitrary geometries to clip away parts of the vol-
ume. The authors from [7] mention that spherical shells
can be incorporated to sample the 3D texture so that step
sizes are approximately constant, as are those obtained by
ray-casting. However, the authors find this approach im-
practical due to the huge amount of geometry that needs to
be generated, transferred to the GPU and rendered. On top
of this, the authors outline how empty-space skipping can
be benefitial to accelerate volume rendering, which in their
case is applied to volume ray-casting. By applying an addi-
tional data structure on top of the data structure containing
the volume data, the sampling distance along a ray can be
increased when entering empty volume regions. They state
that such a data structure can e. g. be an octree hierarchy.
Data structures like grids and octrees usually subdivide the
volume dataset into equally sized grid cells, resulting in
rather inflexible subdivision schemes that are not able to
adapt to non-uniformly sized empty regions throughout the
volume. Li et al. [4] counter this problem by organizing the
volume using BSP trees that store boxes of dynamic size at
their nodes. Rezk Salama and Kolb [2] describe how a pla-
nar proxy geometry for direct volume rendering can be gen-
erated efficiently on the GPU. They rely on efficient proxy
geometry generation in order to perform empty-space skip-
ping. The algorithm they propose is covered in detail in the
following section 3.

Decaudin and Neyret [8] apply geometry programs to
volume rendering. They propose to extend the concept of
billboards to so called volumetric billboards, where instead
of using a flat representation as a coarse approximation for
far away 3D objects in a scene an also coarse, but volumet-
ric representation is used. They generate the volumetric
representation on the fly from actual 3D objects and orga-
nize them using MIP-maps. They also propose to use ge-
ometry programs for intersection calculations, but in con-

trast to our approach, they use a planar proxy geometry to
sample triangular prism-shaped cells. Other applications
of geometry programs for visualization can be found in
[9] and [10], where geometry programs are used for dy-
namic mesh refinement and primitive replication for piece-
wise perspective projections.

3 Vertex Program for Box-Plane Intersec-
tion

With object-order algorithms for volume rendering uti-
lizing the 3D texture capabilities of modern GPUs, vol-
ume datasets are nowadays usually sampled using a planar
proxy geometry. Viewport aligned slices are drawn in z-
order and the GPU interpolates the 3D texture at the respec-
tive sampling positions on the fragment processing stage.
The GPU is usually configured to use alpha blending using
e. g. the over-operator [11], so that alpha compositing is
performed for the trilinearly interpolated samples from the
fragment stage. With this approach, viewport aligned slices
need to be recalculated on the fly each time the camera is
moved. Rezk Salama and Kolb [2] propose a highly opti-
mized algorithm to calculate the polygon resulting from the
box-plane intersection in parallel using a vertex program.

V0

V1

V4

V3

V6

V7

V2

V5

Figure 1. Three unique paths from V0 to V7. The intersec-
tion points with the dotted lines must be filled in between
the intersection points with the solid edges along the re-
spective paths.

First of all, they identify V0 - the vertex of the box
that is closest to the camera - as well as V7 - the vertex that
belongs to the opposite corner. Then they identify three
shortest paths from V0 to V7, that share no edges at all (cf.
Figure 1). By determining the vectors corresponding to the
three edges that make up each path and forcing the vec-
tors to form a left handed coordinate system per path, such
paths can be defined uniquely. A viewport aligned plane

154

that intersects the box must have exactly one intersection
per path. Box-plane intersections result in polygons hav-
ing three to six vertices. I. e. if the polygon resulting from
the box-plane intersection happens to be a triangle, this is
found by intersecting the plane with the three independent
paths, resulting in intersection positions P0, P2 and P4. In
order to find the up to three additional vertices, one inter-
sects the plane with the three dotted eges from Figure 1 and
places the resulting vertices P1, P3 and P5 just in between
the three vertices that are already calculated. If no inter-
section is encountered, the previous vertex is duplicated,
resulting in the following initialization scheme:

P0 = Intersection with E0→1, E1→4 or E4→7

P1 = Intersection with E1→5, otherwise P0

P2 = Intersection with E0→2, E2→5 or E5→7

P3 = Intersection with E2→6, otherwise P2

P4 = Intersection with E0→3, E3→6 or E6→7

P5 = Intersection with E3→4, otherwise P4

This lends itself well to an implementation using a
vertex program. With these, no new vertices can be gen-
erated, so that the program must be passed six locations
that it moves to appropriate intersection positions. By mov-
ing two vertices to exactly the same location, the GPU will
cancel out the respective edge. That way, one can generate
polygons with three to six corners. Finding the intersec-
tions is simply a matter of substituting the plane equation
into the edge equation and solving for the intersection posi-
tion. P0, P2 and P4 will necessarily be valid intersections,
while P1, P3 and P5 are optional. Parallelism is achieved
on a per-vertex level. To avoid branching that is expensive
on GPUs, each vertex program performs four edge-plane
intersection tests in a loop. The programs responsible to
find the intersections with the even index process all edges
on their path and one invalid edge in addition during the
last loop iteration. If the first intersection is found, the loop
exits. Since the intersections with even index necessarily
exist, the loop will never reach the fourth iteration any-
way. After finding the intersection, the vertex is moved
to the intersection position and texture coordinates to per-
form post classification on the fragment stage are adjusted
accordingly. The vertex program responsible for the inter-
sections with odd index intersects the same path with the
same plane. I. e. during iterations one, two or three, the in-
tersection found by the corresponding program processing
the vertex with the even index will be found. During the
fourth iteration, the edge that distinguishes this path from
the other one will be processed. If no intersection is found,
the vertices with the odd and the even index will have the
same location. If an intersection is found, the polygon re-
sulting from the box-plane intersection contains that corner.
Edges are passed to the vertex programs through lookup ta-
bles, as are the eight vertices of the box.

4 GPU Variants of the Intersection Algo-
rithm

Rezk Salama and Kolb argue that calculations can be
moved from the CPU to the vertex stage of the GPU. This
results in better load balancing on the GPU, if there is a
dedicated number of processors responsible for the vertex
stage and for the fragment stage, respectively. With uni-
fied shader architectures in newer GPUs, a varying num-
ber of general purpose processors can be assigned to both
stages of the graphics pipeline. To better accomodate uni-
fied shader architectures, we propose to subdivide the in-
tersection routine described above into more finely grained
subroutines, hinting the graphics driver to schedule them
with a higher degree of parallelism. To accomplish this,
we exploit the newly added geometry stage of the graphics
pipeline.

We propose three novel variants of the algorithm de-
scribed above. The first variant implements slight mod-
ifications to the reference implementation while keeping
all calculations in a vertex program exclusively. The two
remaining variants utilize the geometry shader stage for
proxy geometry generation to varying degrees. All vari-
ants were integrated into the direct volume rendering li-
brary Virvo [12].

4.1 Variant One - Slight Modifications to the Refer-
ence Implementation

Our first variant mostly reimplements the reference imple-
mentation from Rezk Salama and Kolb. Our aim is to re-
duce the memory footprint of their original vertex program.

During each loop iteration in the original vertex pro-
gram, an edge-plane intersection test is performed. To
identify the edge to process during each iteration, a rather
complicated scheme of lookups into fixed size arrays is
used to determine the two vertices that make up the edge.
First the index [0..7] of the box vertex closest to the viewer
is identified. Using this index and multiplying it by 8, a
lookup is performed into the sequence array from Listing
1. If e. g. the index of the closest vertex is 3, the ver-
tex program will process the box vertices in the sequence
3, 6, 5, 0, 7, 2, 1, 4. Depending on the intersection position
P0 through P5 to process, the correct paths (cf. Figure 1)
are identified by looking up the first vertex of an edge from
v1 and the second vertex from v2. Note that some of the
array entries have a negative index. These are the invalid
edges that will never be processed. With the correct indices
for the paths, the object space coordinates are looked up in
the vertices array. All the arrays are passed to the ver-
tex program using uniform variables, which substantially
increases the memory usage of one program instance.

We propose to perform most of the lookups on the
CPU. That way, in addition to the reduced memory usage
in the vertex program, lookups only have to be performed
once per box, instead of once per vertex. The sequence
array is never passed to the vertex program. Instead, the

155

i n t sequence [6 4] = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ,
1 , 2 , 3 , 0 , 7 , 4 , 5 , 6 ,
2 , 7 , 6 , 3 , 4 , 1 , 0 , 5 ,
3 , 6 , 5 , 0 , 7 , 2 , 1 , 4 ,
4 , 5 , 6 , 7 , 0 , 1 , 2 , 3 ,
5 , 0 , 3 , 6 , 1 , 4 , 7 , 2 ,
6 , 7 , 4 , 5 , 2 , 3 , 0 , 1 ,
7 , 6 , 3 , 2 , 5 , 4 , 1 , 0 } ;

/ / edge v e r t e x one
i n t v1 [2 4] = { 0 , 1 , 4 , −1,

1 , 0 , 1 , 4 ,
0 , 2 , 5 , −1,
2 , 0 , 2 , 5 ,
0 , 3 , 6 , −1,
3 , 0 , 3 , 6 } ;

/ / edge v e r t e x two
i n t v2 [2 4] = { 1 , 4 , 7 , −1,

5 , 1 , 4 , 7 ,
2 , 5 , 7 , −1,
6 , 2 , 5 , 7 ,
3 , 6 , 7 , −1,
4 , 3 , 6 , 7 } ;

/ / o b j e c t s p a c e v e r t i c e s o f t h e box
vec3 vertices [8] = { . . . } ;

Listing 1. Uniform lookup tables passed to the vertex
program from the reference implementation. We propose to
move the lookup scheme to reconstruct paths from the GPU
vertex stage to the CPU to reduce the memory footprint of
the vertex program.

vertices array is set up in the correct sequence on the CPU
already, i. e. before passing it to the vertex program.

We on top of this propose to traverse slightly different
paths to find the intersection positions P0 − P5:

P0 = Intersection with E0→1, E1→4 or E4→7

P1 = Intersection with E0→1, E1→5 or E5→7

P2 = Intersection with E0→2, E2→5 or E5→7

P3 = Intersection with E0→2, E2→6 or E6→7

P4 = Intersection with E0→3, E3→6 or E6→7

P5 = Intersection with E0→3, E3→4 or E4→7

The paths with an even index form a left handed co-
ordinate system, while the corresponding paths used to ob-
tain the intersection position with an odd index form a right
handed coordinate system. Since the first edge of two cor-
responding paths is identical, the correct order and distinct-
ness of the intersection positions is maintained.

The new traversal scheme enables us to store the paths
as a consecutive array of vertices and thus to skip one of
the arrays v1 and v2 in favor of one array v of size 24 (cf.
listing 2). As a result of this, only three rather than four
edge-plane intersection tests are necessary per vertex.

i n t v [2 4] = { 0 , 1 , 4 , 7 ,
0 , 1 , 5 , 7 ,
0 , 2 , 5 , 7 ,
0 , 2 , 6 , 7 ,
0 , 3 , 6 , 7 ,
0 , 3 , 4 , 7 } ;

Listing 2. Only one uniform lookup table is necessary
for our revised vertex program. This substantially reduces
the memory footprint of one vertex program instance
compared to the reference implementation.

4.2 Variant Two - Proxy Geometry Generation sing
a Single Geometry Program

Our second variant uses the geometry stage of the render-
ing pipeline exclusively. With the OpenGL shading lan-
guage (GLSL) we used for our implementation, geometry
programs accept one or more vertices from the preceding
vertex stage and are able to emit zero to many vertices.
The input primitives are limited to a subset of all available
OpenGL primitives, as are the output primitives that can be
emitted by a geometry program. In our case, the presence
of a polygon 3D primitive would have been convenient for
output, since the reference vertex program relies on the dis-
tinct order in which the polygon vertices are emitted. The
same order could have been maintained if a triangle fan
primitive would have been available, which is not the case
either, so that we have to make do with the triangle strip
3D primitive as output of our geometry program.

P0

P2

P4

P3

P5

P1

P0

P2

P4

P3

P5

P1

1.) 2.)

Figure 2. The right image shows how to create a triangle
strip equivalent to the polygon depicted in the left image.
In order to be able to generate each kind of primitive from
triangles to hexagons by omitting selected vertices, the strip
must start with P1.

Our second variant of the reference GPU implemen-
tation moves the complete workload of variant one to a ge-
ometry program. Input to the geometry program is a single
point primitive. Output is a triangle strip consisting of up to
four triangles, i. e. one intersection polygon is created from
one single vertex. This implementation strongly resembles
the implementation described in section 4.1. This time, a
vertex program is only needed to pass through the single
vertex to the geometry program. In the geometry program,
a loop iterates over all six possible intersection positions.

u

156

Exactly as it is the case in the reference implementation,
intersections that do not exist are omitted by emitting du-
plicate vertices. In order to generate triangle strips, inter-
section positions need to be evaluated in a different order
than this is true for the polygon primitive. Figure 2 illus-
trates the exact traversal to create a triangle strip equivalent
to the polygon output by the implementation from section
4.1, guaranteeing that each pair of corresponding intersec-
tion positions is processed consecutively.

Compared to the implementation using a single vertex
program, this implementation trades parallelism - here ver-
tices are processed in sequence, while six vertex programs
can be scheduled in parallel - for bandwidth, since only the
sixth part of the original vertex load needs to be transferred
from the CPU to the GPU.

4.3 Variant Three - Distribute Workload Among a
Vertex Program and a Geometry Program

Our third variant distributes the workload for proxy geom-
etry generation more evenly among the vertex- and the ge-
ometry stage. This time, we choose triangles as input prim-
itives to the vertex program. In the vertex program, we per-
form the three edge-plane intersections for which we know
that they exist, while the geometry program processes the
three optional intersection positions.

i f (intersect (P1) emit (P1))
emit (P0) / / p a s s e d t h r o u g h from v e r t e x s h a d e r
emit (P2) / / p a s s e d t h r o u g h from v e r t e x s h a d e r
i f (intersect (P5))
{
emit (P5)
i f (intersect (P3) emit (P3))
emit (P4) / / p a s s e d t h r o u g h from v e r t e x s h a d e r

}
e l s e
{
emit (P4) / / p a s s e d t h r o u g h from v e r t e x s h a d e r
i f (intersect (P3) emit (P3))

}

Listing 3. Pseudo code to emit vertices from a geometry
shader so that triangle strips are generated from input
triangles. Branching depends on the existence of P5.

Since we have to cope with triangle strips as the only
feasible output primitive, branching in the geometry pro-
gram is unavoidable. Taking all combinations of possible
intersections P0 − P5 and given that P0, P2 and P4 neces-
sarily exist, only one combination may result in a triangle
or a hexagon, while there are three distinct combinations
that can lead to quadrangles or pentagons, respectively.
Generating triangle strips as illustrated in Figure 3 for each
combination results in a generation scheme that minimizes
branching. Listing 3 outlines this generation scheme. Dif-
ferent branches have to be taken depending on the existence
of intersection position P5.

Splitting the intersection computations to be per-
formed by a vertex program and a geometry program in
conjunction seems to be the most promising approach re-
garding performance. Primitive emission poses a natural
barrier. With the two variants using a vertex program or
a geometry program solely, only one such barrier exists.
With the combined approach, primitives are emitted by
both the vertex program and the geometry program, while
less intersection positions have to be processed up to each
barrier, resulting in a finer granularity and thus in a higher
potential for the graphics driver to benefit from a higher
degree of parallelism. Additionally, only half the geome-
try needs to be transferred from CPU main memory to the
video memory of the graphics card compared to the mere
vertex program solution.

5 Results

We evaluate the performance of the three GPU box-plane
intersection algorithm variants using three different hard-
ware setups:

• Workstation: this setup consists of a graphics work-
station equipped with an 8 Core Intel Xeon X5472
CPU with 3.00GHz and an NVIDIA Quadro FX5800
graphics card from the NVIDIA professional segment,
that comes with 4GB GDDR3 video memory.

• Desktop: with this setup, a 4 Core Intel Xeon 5160
CPU with 3.00GHz and an NVIDIA GeForce Series
GTX480 graphics card from the NVIDIA consumer
series are built into a standard tower casing. The
graphics board is equipped with 1.5GB GDDR5 video
memory.

• Notebook: for this setup, we use an Apple MacBook
Pro from the ”Early 2011” generation, that is equipped
with an Intel Core i7 CPU with 2.00GHz as well as an
AMD Radeon HD 6490M graphics card with 256MB
GDDR5 memory.

The operating system for the Workstation and Desk-
top setups is a Linux distribution. With the Notebook setup,
we use Mac OS X 10.7 (Lion). Performance is measured
as follows for all hardware setups: With the Linux setups,
that run an X server, the composite extension is deactivated,
that is responsible for desktop effects and would possibly
compete for GPU resources. We found no similar means
to deactivate desktop effects under Mac OS X and have to
cope with the default configuration in the Notebook case.

For our tests, a volume file with a resolution of 256×
256× 225 and one byte of data per voxel is loaded into our
volume rendering application and rendering is performed
using a window with a screen resolution of 512× 512 pix-
els. The volume utilizes a regular grid for empty-space
skipping, although due to the transfer function we use,
there are no empty regions and all grid cells need to be
evaluated (cf. Figure 4). Each cell covers 64 × 64 × 64

157

P0

P0

P0
P0

P0

P0
P0

P0

P2
P2 P2

P2

P2

P2
P2

P4
P4 P4

P4

P4

P4

P4
P4

P2

P1

P1

P3

P3

P3
P3

P5

P5
P5

P5

P1

P1

1.) 2.) 3.)

4.) 5.)

6.) 7.) 8.)

Figure 3. Eight ways to fill in intersection positions P1, P3 and/or P5 generated by the geometry program in between intersection
positions P0, P2 and P4. To generate triangle strips, the optional corners must be filled in at appropriate positions. The first
vertex emitted by the geometry program has a gray filling, while the last vertex has a white filling. The black, solid arrows
depict the order in which the corners are emitted, while the gray, dotted edges are only there to indicate the convex hull of the
polygon. The red, dotted edges depict the outline of the triangle spanned by P0, P2 and P4 originating from the vertex program.
Case 1.) shows the trivial triangle strip for three corners. Cases 2.) through 4.) show how to generate triangle strips for the
three possible quadrangles. Cases 5.) through 7.) show the same for the pentagons, while case 8.) shows how to generate a
triangle strip for the hexagon.

voxels. Because we also use the regular grids to manage
volumes that do not fit completely into video memory, one
additional voxel needs to be stored at the cell borders for
trilinear interpolation, resulting in the volume being orga-
nized into 5 × 5 × 4 = 100 grid cells (cf. Figure 5). The
volume is sampled using 426 planes. At the beginning of
one test run, the volume is moved to the world coordinate
origin and no further transformations are applied to it. The
camera is translated so that the volume is fully visible all
the time. Then, the volume is rotated 90 times in steps of
2◦ along the x-axis, resulting in an overall rotation of 180◦.
This procedure is repeated for the y-axis and the z-axis, re-
spectively. Each time the camera is moved, the time needed
to render one image is measured. At the beginning of one
test run, we perform this procedure once but disregard the
results. We follow this approach since we registered an in-
crease in performance after some time of interaction with

the volume and believe that this is due to the fact that when
rendering the first few frames, the texture caches of the
GPU are not sufficiently filled with data yet. This behav-
ior was most significant when rendering with the Quadro
FX5800 GPU. After filling the texture caches, we perform
the three rotations 10 more times, resulting in 2, 700 frames
rendered during one test run, for which we calculate the av-
erage and standard deviation. We found that clearing video
memory and loading up the 3D texture to the GPU again
resulted in slightly different rendering times compared to
the rendering times measured before. We believe this to
be another side effect of the caching implementation of the
graphics driver and account for it by performing each test
run - i. e. performing the three rotations 11 times and drop-
ping the results of the first three rotations - 10 times, each
time reloading the 3D texture to video memory anew, and
finally averaging over these 10 runs. On average, 6, 444

158

Figure 4. The transfer function we apply for our tests maps
all voxels to nontransparent colors.

box-plane intersections are calculated per frame. When ro-
tating the volume three times around each primary axis,
the overall number of box-plane intersections amounts to
1, 739, 290.

Volume rendering is performed using the over-
operator for alpha-blending, which results in a high work-
load on the fragment stage of the rendering pipeline of the
GPU. Because we are mostly interested in the performance
of the intersection calculations that compete with the frag-
ment programs for unified shader resources, we propose a
second test setup in addition to the ordinary alpha blend-
ing test setup. With this second test setup, we still instruct
the GPU to generate polygons or triangle strips as output
primitives. But by setting the polygon mode to POINT
through the graphics API, we output only the corners of
the 3D primitives to the fragment program, resulting in a
negligible amount of work for that stage of the rendering
pipeline. In the following, we refer to these two modes by
the terms Blending and Points.

Additionally, we apply this performance measuring
routine to a single threaded CPU implementation as well
as an exact reimplementation of the algorithm presented by
Rezk Salama and Kolb for comparison. Table 1 summa-
rizes the results for the Blending mode, while Table 2 out-
lines the same performance measurements for the Points
mode.

On the Workstation setup, we find the variants using
geometry programs to outperform the variant using a ver-
tex program by appr. 10%. We find it noteworthy that with
this setup, rendering times are virtually the same for both
the Blending and the Points mode. The post classification
fragment program we apply for transfer function evalua-
tion performs merely three tasks: first a lookup into the 3D
texture with the volume data. Then a trilinear interpolation
and with the outcome a lookup to retrieve color and opacity
from a 1D texture. Given the large amount of video mem-

Figure 5. The regular grid superimposed on top of the vol-
ume from Figure 4.

Var. Workstation Desktop Notebook
One 0.428 (0.003) 0.574 (0.002) 9.155 (0.026)
Two 0.394 (0.002) 0.594 (0.002) 13.21 (0.089)
Three 0.385 (0.002) 0.580 (0.002) 5.945 (0.049)
CPU 7.508 (0.007) 7.336 (0.015) 6.136 (0.086)
Ref. 0.428 (0.003) 0.577 (0.002) 9.972 (0.052)

Table 1. Results of our performance tests for the Blending
mode, i. e. ordinary direct volume rendering using alpha
compositing. Values depict the time (sec.) it takes to per-
form three 180◦ rotations around each primary axes in steps
of 2◦ - resulting in 270 frames. This procedure is carried
out 10×10 times and results are averaged. Values in paren-
theses display the standard deviation for the test runs. For
comparison, we provide test results for a single threaded
CPU implementation and for the reference implementation.

ory the NVIDIA Quadro graphics card is equipped with,
we surmise that both textures can be completely kept in
caches and lookups are cheap. Since trilinear interpola-
tion is a cheap operation for GPUs anyway, the workload
for the fragment stage is neglible whether or not only the
vertices of the polygons and triangle strips, or their filled
and translucent counterparts are drawn. With the Desk-
top setup, we find the vertex program variant superior to
both variants utilizing geometry programs. With this test
setup, the workload for the fragment stage seems substan-
tially higher, since rendering with alpha blending results
in much higher rendering times in all cases. In both the
Workstation as well as the Desktop case, using the GPU
for proxy geometry generation is far superior to using the
CPU.

With the Notebook setup, we find that using shader
programs in general and especially geometry programs are
not able to outperform the CPU that significantly as it is the

159

Var. Workstation Desktop Notebook
One 0.428 (0.002) 0.393 (0.002) 5.520 (0.027)
Two 0.386 (0.002) 0.410 (0.001) 13.99 (0.155)
Three 0.384 (0.002) 0.400 (0.001) 6.186 (0.052)
CPU 7.504 (0.016) 7.326 (0.015) 6.040 (0.034)
Ref. 0.431 (0.003) 0.400 (0.001) 6.309 (0.052)

Table 2. Results of our performance measurements for the
Points mode. Here, rather than the polygons, only the ver-
tices resulting from the intersection calculations are drawn
by setting the polygon mode to POINT through the graph-
ics API, resulting in a neglible workload on the fragment
stage.

case for the other two test setups. Using the combined ver-
tex / geometry program variant is slightly faster than using
the single threaded CPU variant, while the mere geometry
program variant even needs double the time of the CPU.
With geometry programs, we encountered an interesting
phenomenon: rendering with only the vertices from the
intersections visible even resulted in a performance drop
compared to rendering with alpha blending. We also note
an increased deviation in rendering times compared to us-
ing only a single vertex program for intersection calcu-
lations. We can only speculate that shader programs are
rather poorly supported by the Apple AMD drivers, though
with ordinary volume rendering, the combined vertex / ge-
ometry program variant is slightly superior even to the CPU
implementation.

6 Conclusion

We presented three variants of implementing box-plane in-
tersection tests for direct volume rendering on the GPU
using the programmable stages exposed by the OpenGL
graphics API. For test setups with high performance graph-
ics hardware, the GPU implementations outperform inter-
section tests on the CPU, just as Rezk Salama and Kolb
proved in their original paper. Assigning some of the cal-
culations to geometry programs can even further enhance
performance slightly in some cases. Because geometry
program support is poorly implemented on some hardware
platforms, implementing the intersection computation in a
vertex program will result in a more general solution and
thus is preferable at this time. We presented a way to sub-
divide the proxy geometry generation so that both vertex
stage and geometry stage can handle a compute intensive
share of that task in parallel. Although this subdivision
scheme results only in a slight performance enhancement
on current hardware platforms, we believe it to be a nat-
ural enhancement to the original implementation by Rezk
Salama and Kolb that can potentially outperform the mere
vertex program implementation on future architectures.

References

[1] M. Hadwiger, J. M. Kniss, C. Rezk Salama,
D. Weiskopf, & K. Engel, Real-time Volume Graph-
ics, Natick, MA, USA: A. K. Peters, Ltd., 2006, ISBN
1568812663.

[2] C. Rezk Salama & A. Kolb, A vertex program for ef-
ficient box-plane intersection, Proc. Vision, Modeling
and Visualization (VMV), 2005, pages 115–122.

[3] E. Lindholm, J. Nickolls, S. Oberman, & J. Montrym,
NVIDIA Tesla: A unified graphics and computing ar-
chitecture, Micro, IEEE, 2008, 28(2), 39–55.

[4] W. Li, K. Mueller, & A. Kaufman, Empty Space Skip-
ping and Occlusion Clipping for Texture-based Vol-
ume Rendering, VIS ’03: Proceedings of the 14th
IEEE Visualization 2003 (VIS’03, IEEE Computer
Society, 2003 .

[5] R. Westermann & T. Ertl, Efficiently using graph-
ics hardware in volume rendering applications, SIG-
GRAPH ’98: Proceedings of the 25th annual con-
ference on Computer graphics and interactive tech-
niques, ACM Request Permissions, 1998 .

[6] F. Dachille, K. Kreeger, B. Chen, I. Bitter, & A. Kauf-
man, High-quality volume rendering using texture
mapping hardware, Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics
hardware, 1998, pages 69–ff.

[7] J. Kruger & R. Westermann, Acceleration Techniques
for GPU-based Volume Rendering, VIS ’03: Proceed-
ings of the 14th IEEE Visualization 2003 (VIS’03,
IEEE Computer Society, 2003 .

[8] P. Decaudin & F. Neyret, Volumetric billboards, Com-
puter Graphics Forum, 2009, 28(8), 2079–2089.

[9] H. Lorenz & J. Döllner, Dynamic mesh refinement on
GPU using geometry shaders, Proceedings of the 16th
International Conference in Central Europe on Com-
puter Graphics, Visualization and Computer Vision,
2008, pages 97–104.

[10] H. Lorenz & J. Döllner, Real-time piecewise perspec-
tive projections, GRAPP 2009-International Confer-
ence on Computer Graphics Theory and Applications,
2009, pages 147–155.

[11] T. Porter & T. Duff, Compositing digital images,
ACM Siggraph Computer Graphics, 1984, 18(3),
253–259.

[12] J. Schulze, U. Woessner, S. Walz, & U. Lang, Volume
rendering in a virtual environment, Immersive Projec-
tion Technology and Virtual Environments 2001: pro-
ceedings of the Eurographics Workshop in Stuttgart,
Germany, May 16-18, 2001, 2001, page 187.

160

