
Eurographics Conference on Visualization (EuroVis) 2023
Authors’ version (See the publisher’s webpage for the definitive version)

Volume 0 (2023), Number 0

Memory-Efficient GPU Volume Path Tracing of AMR Data

Using the Dual Mesh

Stefan Zellmann1 Qi Wu2 , Kwan-Liu Ma2 , and Ingo Wald3

1University of Cologne 2University of California - Davis 3NVIDIA

Figure 1: Overview of our method. Given a block-structured or octree-AMR data set (left) we first create the dual mesh (middle) and split

that into the truly unstructured elements used to stitch the level boundaries (red) and those that are regular voxels (blue/white checkered). We

then cluster voxels to become ªgridletsº. Right: gridlets colorized by their ID. We build a bounding volume hierarchy over the gridlets and

the remaining unstructured elements. The result is a sampleable representation that generates the exact same result as sampling on the dual

mesh directly, but with significantly lower memory overhead and higher sampling speed. On our largest data sets, we see memory savings of

up to 3× compared to highly compressed state-of-the-art unstructured mesh representations.

Abstract

A common way to render cell-centric adaptive mesh refinement (AMR) data is to compute the dual mesh and visualize that with

a standard unstructured element renderer. While the dual mesh provides a high-quality interpolator, the memory requirements

of the dual mesh data structure are significantly higher than those of the original grid, which prevents rendering very large data

sets. We introduce a GPU-friendly data structure and a clustering algorithm that allow for efficient AMR dual mesh rendering

with a competitive memory footprint. Fundamentally, any off-the-shelf unstructured element renderer running on GPUs could

be extended to support our data structure just by adding a gridlet element type in addition to the standard tetrahedra, pyramids,

wedges, and hexahedra supported by default. We integrated the data structure into a volumetric path tracer to compare it to

various state-of-the-art unstructured element sampling methods. We show that our data structure easily competes with these

methods in terms of rendering performance, but is much more memory-efficient.

1. Introduction

Adaptive mesh refinement (AMR) was first proposed by Berger and
colleagues [BO84,BC89] and refers to simulation codes that adap-
tively refine the grid used for the computation in both space and
time. The resulting AMR data sets are collections of uniform, rec-
tilinear subgrids at different refinement levels. Subgrid cells at level
l ∈ N0 have a size of 2l units of length.

The subgrids produced by virtually all physics codes are cell-
centric, which gives rise to the T-junction problem and makes or-
dinary rectilinear interpolators inapplicable; repeating or clamping
values at level boundaries for isosurface or volume rendering re-
sults in cracks and discontinuities. One way to overcome this is to
sample on the dual grid (syn.: dual mesh), where the data is as-
sociated with the corners and not the cell centers (cf. Fig. 1). The
dual of an AMR grid as shown in Fig. 2a is computed by shifting
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(a) (b) (c) (d)

Figure 2: Problem statement. (a) (Octree-) AMR input data. The dual mesh of each 2× 2 subgrid (we omit the third dimension for clarity)

is obtained by shifting all its cells, giving us the dark gray dual cells in (b). In this extreme case of octree AMR, the dual grid of each 2× 2
subgrid is just a single dual cell. Original cells at the (level) boundaries have no corresponding dual cells at all. (c) The dual mesh of the

AMR data set is constructed from the subgrid duals (dark gray), and by filling the gaps at the level boundaries with unstructured ªstitchingº

elements (light gray). (d) State-of-the-art methods represent dual meshes as ordinary unstructured grids. Many of the cells are voxels (perfect

cubes) though, including the stitching cells at same-level boundaries (highlighted in red). Representing those voxels with general hexahedra

is memory intensive and prevents rendering of large data sets that are omnipresent in the computational sciences. We propose to address this

by clustering the hexahedra so they become voxels again and their memory footprint is significantly reduced.

all subgrids by half a cell’s width so the new vertices snap to what
originally were the cell centers (cf. Fig. 2b), and by introducing
generally unstructured ªstitchingº cells at the subgrid boundaries,
as shown in Fig. 2c.

This can result in data layouts with an inferior memory footprint;
e.g., for octree AMR, subgrids have 23 voxels and generate only
one inner cell, plus surrounding stitching cells at the boundaries
(cf. Fig. 2c). All those cells, including the inner one, are represented
with regular hexahedra; if the surrounding octree leaves however all
come from the same level, not only the single subgrid cell, but all
the surrounding stitching elements are perfect cubes (for example
the highlighted stitching cells in Fig. 2d) and the representation
using general hexahedra is extremely wasteful and can even make
rendering medium-sized data sets impossible.

In this work we introduce a memory-efficient version of the dual
grid interpolator by Moran and Ellsworth [ME11] for AMR volume
rendering on GPUs. For that we split the generated dual cells into
generally unstructured elements at the level boundaries and intro-
duce a gridlet element type to cluster hexahedra that are actually
cubes/voxels (cf. Fig. 1c).

This approach is very general, as gridlets complement the ex-
isting element types; by introducing a number of simple exten-
sions, any unstructured renderer can accommodate the kind of large
AMR data we focus on, without any additional changes to the
overall rendering infrastructure. We integrated our data structure
into a volume path tracer that uses hardware-accelerated ray trac-
ing queries for sample reconstruction. We also implemented sev-
eral state-of-the-art unstructured element samplers for comparison,
most of which focus on reducing the memory footprint or exces-
sive processing times for very large unstructured meshes. For our
largest data sets, those other samplers consume several times more
peak and total memory than ours. Our method is also competitive
toÐand in some cases even outperformsÐhighly optimized GPU
AMR data structures that sample the data on the original grid.

2. Related Work

We review related work on volume rendering and path tracing, on
scientific visualization of unstructured meshes, and on rendering
AMR data sets.

2.1. Volume Path Tracing

Although direct volume rendering (DVR) is a popular scientific vi-
sualization algorithm, many implementations still use the absorp-
tion plus emission model [Max95] and biased integration methods
like ray marching [Lev88]. Even though visualization tools like
VisIt [Chi12] or ParaView [AGL05] still use this simple model,
the field is however gradually transitioning to unbiased render-
ing methods using free-flight distance sampling to compute trans-
mission estimates. This transition expresses itself in a number
of recent papers on volume path tracing for scientific visualiza-
tion [HMES20, MSG∗22, XTC∗22, ZWS∗22b].

The goal is to stochastically compute free-flight distances that
photons travel through a medium without colliding with other par-
ticles. If a collision happens, there are multiple options to consider;
e.g., a shadow ray can be traced towards a light source to implement
single scattering, or a random walk using phase functions could en-
sue to ultimately evaluate the whole rendering equation. Woodcock
tracking [WMHL65] is the simplest tracking method and homog-

enizes the heterogeneous medium using fictitious particles; a col-
lision with a fictitious particle is called a null collision, where the
direction and throughput of the particle remain unchanged [NSJ14].

Woodcock tracking can use local majorants, which present an
upper bound for the volume density in some region of space and can
be used to build acceleration data structures [YIC∗10, SKTM11].
While Woodcock tracking has in the meantime been superseded
by more advanced tracking [GMH∗19] or unbiased marching algo-
rithms to perform inverse transform sampling [KDPN21], the prin-
ciple of using data structures to compute upper (or lower) bounds
with spatially varying majorants (or minorants) remain very rele-
vant, as these can significantly reduce the number of rejection sam-
ples taken by the tracking algorithm.
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2.2. Unstructured Mesh Rendering

While rendering algorithms for unstructured meshes are well-
established [SCCB05], they primarily pose a data management

problem for scientific visualization packages. That is because ren-
dering algorithms based on ray tracing require a sampling or traver-
sal data structure that adds to the usually already very high memory
demand to store the unstructured elements themselves.

Ray marching approaches such as the one by
Muigg et al. [MHDG11] or by Sahistan et al. [SDM∗21,SDW∗22]
require a data structure that, given an element the marcher is
currently in, and the direction where to go next, tells us how to get
there; this can be done using shared faces, or by using other clever
means. These approaches are usually rather restricted because in
order to arbitrarily scatter into a certain direction they must travel
there by marching from element to element.

Sampling methods such as the min/max BVH by
Rathke et al. [RWCB15] or the hardware ray tracing approaches
by Wald et al. [WUM∗19] and by Morrical et al. [MUWP19]
support cell location queries at arbitrary positions in R

3 without
first marching there to obtain interpolated values. They instead
trace a zero-length ray into a bounding volume hierarchy (BVH) or
similar data structure and use special intersection tests that report a
hit when the ray origin falls inside an element. Here the BVH adds
to the overall memory pressure.

The works by Morrical et al. [MSG∗22] and by
Wald et al. [WMZ22] present the current state of the art in
unstructured mesh sampling with BVHs, in regards to construction
time (Morrical’s) and in regards to memory efficiency (Wald’s).
The two methods and optimizations proposed, however, focus on
data that is generally unstructured, where often not even a single
hexahedron is a perfect cube. Since we compare our method to
them, the technical details of the two approaches are discussed in
more detail in Section 6.2

2.3. High-Quality and Large-Scale AMR Rendering

Rendering cell-centric AMR data is particularly challenging,
so that early works have concentrated on vertex-centric data
only [MDV09], or resorted to sample reconstruction with zeroth or-
der box filters if the data was cell-centric [KWAH06]. More recent
papers have proposed high-quality reconstruction with first order
C0 continuous filters. An example are the tent-shaped basis func-
tions by Wald et al. [WBUK17], which define 3D tents over each
cell; the basis functions of those extend beyond the cell bound-
aries and therefore overlap. Computing a weighted average using
the tent filter, the data can be smoothly reconstructed even at level
boundaries. The sampler by Wang et al. [WWW∗19] uses an alter-
native approach that first determines which neighboring cell octants
a rectangular reconstruction filter falls into, and then uses these for
reconstruction (the values for the octants themselves can then, e.g.,
again be computed using tent basis functions).

As these samplers are quite expensiveÐone first needs to locate
each of the constituting cells by traversing a kd-tree or BVHÐthe
ExaBrick data structure by Wald et al. [WZU∗21] first identifies
same-level cells and combines them into bricks; to support tent ba-

sis functions, the data structure then computes active brick over-

lap regions where the tent basis support regions of the bricks’ cells
overlap; rays marching through these overlap regions do not need to
perform tree traversal to locate the cells therein. The data structure
can also be used to adapt the sampling rate. Zellmann et al. later
proposed extensions to use point location queries [ZSM∗22], to
support fast data buffer updates [ZWS∗22a], and to support volume
path tracing [ZWS∗22b].

Hybrid AMR and unstructured approaches also exist. The work
by Shih et al. [SZM∗14] visualizes data that is unstructured near
the mesh boundary of the simulation, and AMR in the off-body
domain. The authors approach this using kd-trees and multi-pass
rendering with depth peeling.

2.4. Dual Mesh AMR and Stitching

An orthogonal approach to high-quality AMR rendering is to use
dual cells; the idea here is to shift the whole cell-centric AMR grid
to become the dual grid; grid cells in regions without level tran-
sitions then become regular hexahedra, while at level boundaries,
generally unstructured elements are introduced as ªstitching cellsº.
In 3D, those general elements can have curved faces which need to
be approximated with bilinear patches to avoid artifacts.

Stitching algorithms follow simple rule sets that determine
which type of boundary cell is generated depending on if we are
at the face, edge, or corner of a subgrid, and on the difference in
refinement levels there. Earlier stitching algorithms like the one
by Weber et al. [WKL∗01] only supported level transitions with
a difference of 1. The algorithm by Moran and Ellsworth [ME11]
later proposed an alternative pattern that allowed for arbitrary dif-
ferences in refinement levels of neighboring subgrids. The paper
by Wald [Wal20] proposes an efficient GPU algorithm to snap the
original cells to their duals in parallel, resulting in the same pattern
as Moran and Ellsworth’s. Implicitly obtained dual cells have also
been used by Wang et al. [WMU∗20] to implement a trilinear inter-
polation scheme for tree-based AMR. Methods that a priori com-
pute the dual mesh can be prohibitive if the data is large, because
they map all the original rectangular cells to unstructured elements.

3. Method Overview

We propose to render large AMR data using a hybrid data struc-
ture that is based off the dual mesh, which comprises generally un-
structured ªstitchingº elements as well as what we call gridlets:
small uniform grids of neighboring same-sized, not twisted hexa-
hedra cells that, as in ExaBrick by Wald et al. [WZU∗21] are al-
lowed to span the domain of multiple original AMR subgrids. To
that end, at least for the stitching elements one can just use any
off-the-shelf volume renderer that supports unstructured elements
(tetrahedra, pyramids, wedges, and hexahedra with twisted faces);
and by adding our gridlets as yet another unstructured element type
specialized on this kind of data, any such off-the-shelf volume ren-
derer could be extended to render our data structure.

In this paper we concentrate on sampling-based volume render-
ers that use bounding volume hierarchies (BVHs) for cell loca-
tion [WUM∗19]. The data structure allows us to efficiently render
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Figure 3: Three gridlets of size 2× 2 dual cells. Vertices/corners

(white dots) at gridlet boundaries are duplicated (ghost layers).

Gridlets are stored compactly; e.g., the rightmost gridlet consists of

2×1 cells. At level boundaries, where other stitching cells overlap,

gridlet corner values can be empty (red dot). Dual cells with one

or more empty corners (light blue) are skipped during filtering.

the AMR data using volumetric path tracing; our path tracing im-
plementation requires spatially varying majorants, which we use to
adaptively sample the data using Woodcock tracking [WMHL65].
The steps involved to use our method are the following:

• Dual mesh and gridlet generation: we first create the dual mesh
of the AMR data set and create gridlets using clustering. This is
done in an offline process.

• Acceleration structure generation: before rendering, we build
a uniform grid with macro cells that span the whole AMR data
set and store spatially varying majorants. We also build a sam-
pling BVH using NVIDIA OptiX [PBD∗10] to locate stitching
cells and gridlets.

• Rendering: we use OptiX to implement volumetric path tracing
with several features typical for scientific visualization (clipping,
transfer functions, etc.) and the high quality interpolant induced
by our efficient stitching method.

In the following, we provide a detailed description of those steps, as
well as how to efficiently implement them on GPUs with hardware
ray tracing cores.

4. Dual Mesh and Gridlet Generation

In a first step we build the dual mesh and split all of its cells into per-
fect cubes and into stitching cells that fill the gaps at level bound-
aries. We then cluster the perfect cubes into gridlets of same-size
voxels. Gridlets are small Cartesian grids; here we have to be care-
ful because stitching cells and gridlets (but not the actual cells in-

side the gridlets) will generally overlap. As our primary focus in
this paper is not on construction time, we do not particularly opti-
mize for this phase and hence implemented it as an offline step. We
still note that the general choice of algorithms does lend itself to
efficient implementations on GPUs.

4.1. Dual Mesh Generation

To generate the dual mesh we adapt the algorithm by Wald [Wal20]
to skip the marching cubes isosurface extraction step and instead
write out the dual cells directly; we use the author’s publicly avail-
able GPU implementation, which can extract the dual mesh of
large-scale data sets such as the NASA Exajet (656 M hexes) in
under ten seconds. Wald’s algorithm produces the same stitching
cells as Moran and Ellsworth’s algorithm [ME11].

We also modify the algorithm to split the resulting unstruc-
tured elements into perfect cubes and into all other elements (gen-
eral tetrahedra, pyramids, and wedges, as well hexahedra that are

twisted, have one collapsed edge, or are not uniform in size). For
that we use a slight modification to Wald’s doDualCell algo-
rithm (cf. [Wal20], Sec. 4.4) that snaps the dual cells to their (po-
tentially coarser) real dual cells. Here we keep track of the refine-
ment level of the eight cells to snap, and if all the cells’ levels are
the same, we know that we are not at a level boundary, or in a stitch-
ing region connecting same-level hexahedra and hence the dual cell
emitted is a perfect cube.

By temporarily generating a full unstructured mesh from the
AMR cells, in the same spirit of highly optimized AMR rendering
data structures like ExaBrick [WZU∗21], we also drop the original
(block-structured, octree, etc.) AMR hierarchy. This allows us to
build a data structure that is optimized for rendering and that can
combine same-level (dual) cells from neighboring AMR subgrids.

4.2. Creating Gridlets

In a next step we combine all perfect cubes (neighboring dual cubes
that were known to be cubes to begin with, as well as cubes at
stitching boundaries) into gridlets using a clustering algorithm. Gri-
dlets are small Cartesian grids that contain dual cells with the same
refinement level; hence, the gridlet cell size matches the exact size
of the respective dual cells on that level.

We construct the gridlets so that the data values are associated
with the cell corners; per construction, gridlets have one ghost cell
layer where they connect with gridlets of same-level dual cells; a
gridlet with 8×8×8 cells for example will store 93 scalars. At the
same time, since gridlets and stitching cells are allowed to over-
lap, gridlets can contain empty cells (see below). See Fig. 3 for an
overview of those concepts.

Smaller gridlets will be dominated by ghost layers, but benefit
from a finer domain tessellation, whereas bigger gridlets amortize
the ghost layers through their size, but contain more empty cells.
We use gridlets of size 8×8×8; we saw negative returns for larger
gridlets, both in memory consumption as well as rendering perfor-
mance.

To construct the gridlets, we first convert the perfect cubesÐ
which are technically still hexahedra represented with eight ver-
tex indicesÐto voxels, which are uniquely identified by their min-
imum corner in cell coordinates (int3 lower) and their refine-
ment level (int level). We then sort the voxels to obtain sep-
arate lists for each refinement level. (Later, when the voxels are
assigned to gridlets, we can represent them even more compactly
using a single floating point value.)

For each refinement level, we define ªmacrocellsº that form a
virtual structured regular grid and span the number of voxels of the
intended gridlet size. The macrocells will eventually become gri-
dlets if they contain any voxels on the respective refinement level.
Voxels are mapped to their macrocells using projection. We project
the voxels on each refinement level into their macrocells; since this
is done per refinement level, not nearly all macrocells on each level
will be active. We lazily activate the macrocells (to then become
gridlets) only when voxels from the current refinement level project
to them. This way, gridlets that are not connected to another gridlet
from the same level via a face are (implicitly) shrunk to tightly en-
close their voxels, such as the rightmost, light gray gridlet in Fig. 3.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Illustration of dual mesh and gridlet generation in 2D. (a) the input AMR mesh comprised of four Level-0 subgrids (finest resolu-

tion) that form an L, two Level-1 subgrids, and one Level-2 subgrid (coarsest resolution) that the other subgrids are embedded into. (b) the

corresponding unstructured dual mesh; we first split the unstructured elements into subgrid hexahedra/cubes (dark gray) and stitching el-

ements (light gray). (c) hexahedra elements whose corners have the same refinement level are added to the set of cubes. (d,e) we process

the cubes on each refinement level separately and (here) create gridlets of 2×2 cells. For that we use a virtual grid that is aligned with the

cubes, and activate only those macrocells that contain cubes. We insert empty cells (cf. light blue cell in (e,f)) in concave and cut-out regions

where one or more of the macrocell grid’s corner vertices does not correspond to a valid dual cell on that level (red corner vertex in (e,f)).

Here we obtain three Level-1 gridlets (d) and 16 Level-0 gridlets (e). (f) shows the combined stitching and per-level gridlet geometry.

Gridlets themselves are represented by their origin, the number
of voxels, and a list of scalar IDs to map from voxels to data. Gri-
dlets with N × M × K voxels have (N + 1)× (M + 1)× (K + 1)
scalar IDs. When a gridlet is created, initially all its scalar IDs are
set to −1, denoting an empty cell; we later update the scalar IDs as
required and leave only those cells empty where no data is avail-
able; per construction, empty cells only occur at cut-outs at the cor-
ners when the cells form L-shapes, T-shapes, etc.

At the construction stage, the gridlets store scalar IDs and not
the data itself, so as to support multi-field data. We later however
resolve the indirection when preparing the gridlets for rendering.

The overall process of generating the dual mesh, voxels, and gri-
dlets is summarized in Fig. 4. Pseudo code for gridlet generation
is shown in Algorithm 1. The algorithm is executed separately for
each refinement level. In the first phase, we project the cubes onto
the virtual grid. Cubes get inserted into their macrocells, which get
activated if they were not active yet, and have their bounds ex-
tended accordingly. During the second phase of the algorithm, we
iterate over each active macrocell. The macrocells store references
to their cubes, and we now seek to initialize the macrocells’ scalar
IDs from these. Before we start, we initialize each scalar ID of the
macrocell with −1, indicating that the scalar value does not exist.
We then iterate over the cubes, and also increment the scalar ID of

the macrocell we are manipulating in VTK order (function NEXT

in Algorithm 1). At the level boundaries, depending on the spa-
tial arrangement, some of the scalar IDs remain empty (−1) where
the gridlet overlaps the unstructured stitching geometry, or gridlets
from other refinement levels. A naïve, serial implementation might
use a hashmap to store the virtual grid, and lazily create macrocells
only when a cube gets inserted. Implementing this algorithm on
the GPU using two compute kernels and atomic operations would
however also be straightforward.

5. Sampling and Rendering

We focus on rendering using BVH sampling [WUM∗19,ZSM∗22];
being able to take samples at arbitrary positions before first march-
ing there using a shared-face data structure allows us to imple-
ment advanced ray tracing methods, including Woodcock track-
ing [WMHL65]. Fundamentally, our data structure is also compat-
ible with element marchers, shared face algorithms, or approaches
that focus on rasterization though.

We implemented an example renderer with NVIDIA
OptiX [PBD∗10]. That allows us to make use of hardware
ray tracing for sample location; some of the samplers we compare
against (cf. Section 6) are also available as OptiX implementations,
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Algorithm 1 Generating gridlets per level by projecting the perfect
cubes of the dual mesh onto a virtual grid.

1: function MAKEGRIDS(Level,Cubes)
2: MacroCells[Level] = ∅
3: for each c ∈Cubes[Level] do

4: mc = MacroCells[Level][c] ▷ project c to virtual grid
5: mc.ExtendBounds(c.Bounds())
6: mc.Cubes.Insert(c)
7: end for

8:
9: for each mc ∈MacroCells[Level] do

10: if mc.IsActive() then ▷ bounds extended at least once
11: numScalars = mc.Size() + {1,1,1}
12: mc.ScalarIDs.Resize(numScalars)
13: mc.ScalarIDs.Set(−1)
14: mcScalarID = 0 ▷ Current scalar ID of mc
15: for each c ∈ mc.Cubes do

16: for all cScalarID ∈ c.ScalarIDs do

17: mc.ScalarIDs[mcScalarID] = cScalarID

18: mcScalarID = NEXT(mcScalarID)
19: end for

20: end for

21: end if

22: end for

23: end function

so implementing ours with OptiX allows us to directly integrate
them within the same framework. We aim at implementing a
sampler that is simple, i.e., when there is a choice between using
a smart low-level optimization and implementation simplicity, we
opt for the latter unless the effect of the optimization is significant.

5.1. Cell Location and Sampling

To be able to sample from the data structure, we need to set up
BVHs with OptiX. For that we use separate OptiX geometries for
the unstructured stitching elements and the gridlets; the stitching
geometry stores pointers to the vertices (float4, the w compo-
nent encodes the scalar value) and to the element indices (of type
int32_t). We use an encoding representing every element with
exactly eight indices. Elements with fewer indices are padded with
−1’s. Gridlets have their own geometry; they do not contain IDs
or vertices, but instead store lists of scalarsÐone per cell cornerÐ
including empty scalars that are encoded using the special value
NAN (for ªnot a numberº). We also experimented with using a sin-
gle geometry per stitching element type to avoid the extra padding
indices. For meshes that primarily consist of tets or pyramids, stor-
ing those padding indices can be quite wasteful; here we how-
ever observed the opposite: peak GPU memory measured with
nvidia-smi consistently exceeded that of the approach with two
geometries, by about 1-5% depending on the data set, while render-
ing performance only differed within measurement error.

Gridlets cannot have shared vertices (only shared values due to
ghost layers where the cell corners of neighboring gridlets or cells
connect, cf. Fig. 4f). Hence, the per-gridlet scalar ID lists from be-
fore can be flattened so that the gridlets store the scalars directly.

In that sense, gridlets can be thought of as vertex-centric 3D tex-
tures, with the special value NAN denoting empty texels. For lack
of data sets that exceed that limit, we assume that the overall num-
ber of cells cannot exceed 231, so that gridlets can compactly be
represented using 32 byte (3× int32_t for the gridlet origin, 1×
int32_t for the refinement level, 3× int32_t for the gridlet
size/voxel count, and 1× int32_t offset into scalar list); plus the
voxels/scalars themselves (numScalars × float).

When building OptiX BVHs we cull invisible elements by clas-
sifying them using the alpha transfer function. We also do that for
gridlets. Here, the min/max data values are precomputed so we can
interactively cull them without traversing all the scalars when the
transfer function changes. We once set up OptiX geometries con-
taining all the primitives, and invalidate their bounding boxes be-
fore building the OptiX BVH and let OptiX determine that they are
empty and will not be included in the BVH; we always cull the ele-
ments in this way whenever the transfer function changes, and then
fully rebuild the BVHs. Gridlet and unstructured element geome-
tries have their own bottom-level BVHs. We combine those using a
top-level BVH, which gives us a sampleable two-level acceleration
data structure.

We sample the two-level BVH with zero-length rays and use
OptiX intersection programs to implement the element intersec-
tion tests. For the stitching geometry, we use an intersection test
that supports unstructured elements with bilinear faces that we took
from Intel’s open source library OpenVKL [Int], and then ported it
to CUDA to run on NVIDIA GPUs. Gridlets have their own OptiX
intersection program that immediately dispatches to a general sam-
pling function to perform a point lookup and compute the value of
the gridlet at the ray origin.

The function first checks if the sampling position falls inside the
gridlet’s object bounds. Then, the position is transformed to gridlet
coordinates using an affine transform based on the gridlet origin
and cell size. That gives us the cell that overlaps the sampling posi-
tion; if either of the scalars at the eight cell corners is empty (i.e., its
value is NAN), then the gridlet was not intersected. If we encoun-
tered an intersection, we use trilinear interpolation to reconstruct
the cell’s data value. Back in the intersection program, an intersec-
tion is reported using OptiX to indicate that we found a hit inside
the BVH.

5.2. Woodcock Tracking with Spatially Varying Majorants

Following recent trends in sci-vis, our renderer implements vol-
umetric path tracing; from the numerous algorithms to compute
free-flight distance samples that exist, we pick Woodcock track-
ing [WMHL65] for its simplicity. Fundamentally, our observations
should however also apply to algorithms that are for example based
on control variates [GMH∗19] or use unbiased marching with Tay-
lor series expansion [KDPN21].

Woodcock tracking uses fictitious particles as control variates
to homogenize heterogeneous media; using rejection sampling, in-
side a loop (cf. Algorithm 2), the algorithm probabilistically deter-
mines if a sampling interaction is a fictitious (or, ªnullº) collision,
in which case we just sample on along the same direction and the
loop iteration continues. A real collision triggers a scattering event
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Algorithm 2 Woodcock tracking with null collisions.

1: function WOODCOCK(o,ω,Åµ,tmin,tmax)
2: t = tmin

3: do

4: ζ = RAND()

5: t = t − log (1−ζ)
Åµ

6: if t ≥ tmax then ▷ outside region bounds
7: break

8: end if

9: ξ = RAND()

10: while ξ >
µ(o+t∗ω)

Åµ ▷ exit loop ⇒ real collision
11: return t
12: end function

and causes the loop to terminate. The smaller the difference be-
tween the actual extinction µ(x), x ∈ R

3 and the majorant extinc-

tion Åµ, the fewer times the rejection sampling loop will be called
and the procedure will become more efficient. By dividing the vol-
ume into regions of space with their ownÐpreferably tightÐlocal
majorants Åµi, an acceleration structure can be constructed.

In sci-vis volume rendering it is customary to use post-
interpolative transfer functions. The majorant density is not directly
derived from the underlying scalar field, but is obtained by classi-
fying that with the RGBα transfer function, which can frequently
change. We interpret the RGB component of the transfer function
as scattering albedo, and the α component as extinction coefficient.
Due to that indirection, and since we want to interactively change
the transfer function, it is not possible to directly compute local
majorants; we instead have to subdivide the volume (either spa-
tially or in object space) and compute min/max scalar ranges for
the resulting volume regions (cf. min/max trees [KWPH06]); these
are later, when the transfer function changes, used to compute the
regions’ local majorants by iterating and computing the maximum
extinction/α value of the transfer function inside that range.

Similar to recent work on volume path tracing in sci-
vis [MSG∗22,ZWS∗22b], we use a uniform grid with majorants as
an acceleration structure. We compute the min/max regions offline
by projecting each unstructured element and each gridlet cell onto
the uniform grid. The majorants are stored in a separate list of float-
ing point values and, as described above, are updated using post-
classification when the transfer function changes.

This min/max grid allows us to interactively change the transfer
function. It would be impractical to iterate over the entire volume
all the time to recompute majorants because then this process would
become non-interactive. The min/max ranges used as indices into
the linear transfer function array help us to speed this procedure up
significantly. As we need to store three 32-bit floating point values
per cell (the precomputed min/max value ranges and the majorants
that change on transfer function updates), GPU memory consump-
tion can however become significant when using grids with high
resolution. The renderer traverses the grid using the 3D digital dif-
ferential analyzer algorithm (DDA) [SKTM11], giving us integra-
tion ranges [tmin, tmax] and local majorants Åµi for the ray ⟨o,ω⟩ to
pass as arguments to Algorithm 2.

In Algorithm 2, the point extinction µ(x) is obtained via BVH
sampling as detailed in Section 5.1. Quite often, subsequent sam-

ples are taken from the same gridlet. For this special element type
we implemented a caching optimization. When we encounter a null
collision sampling the range [tmin, tmax], we store the primitive ID
of the current gridlet; when we later take another sample inside the
same range, we first test if the sample would fall into that gridlet,
and only if it does not, we take a point sample from the BVH.

5.3. Path Tracer Implementation

We use the sampling and traversal routines to implement a volume
path tracer. Our renderer supports single scattering with shadow
rays or multi-scattering phase functions. We use Russian roulette
to terminate low-throughput paths. The RGB components of the
post-classification transfer function serve as albedo and the alpha
components as extinction coefficients. We support omnidirectional
dome lights as well as point light sources.

We implement the path tracer in an OptiX ray generation pro-
gram, which allows us to then trace sampling rays into the element
BVH. We traverse the majorant grid and generate a scattering event
when a collision was encountered inside the macrocell. Rays with-
out a collision generate a boundary hit event. Their path throughput
is optionally weighted by the dome light’s contribution, and then
their path throughput and intensity are written to an accumulation
buffer. The accumulation buffer is periodically converted to sRGB
and written to the frame buffer for display.

6. Results and Evaluation

In this section we present construction, memory, and sampling/ren-
dering performance benchmarks. We also compare our method to
various state-of-the-art GPU samplers optimized with different ob-
jectives in mind. We integrated them into our framework and exer-
cised them on an assortment of data sets that are representative for
typical modern AMR simulation codes. We executed the bench-
marks on a workstation with an NVIDIA A6000 GPU with 48 GB
GDDR memory, an Intel i7-11700KF CPU (8 cores/16 threads),
and 64 GB RAM. The system uses Ubuntu Linux 20.04, NVIDIA
driver version 510.85.02, CUDA 11.6, and OptiX 7.4.

6.1. Data Sets

We use the four data sets presented below for the evaluation. See
Fig. 5 for a visual overview, and Table 1 for data set statistics.

TAC Molecular Cloud. The molecular cloud data set was pro-
duced with the ªSILCC-Zoomº simulation [SWG∗17] that zooms
in on highly detailed regions (eight refinement levels across all time
steps) of gaseous molecular clouds to understand galaxy formation.
The simulation is based on the FLASH code [FOR∗00], which gen-
erates octrees, but with 16×16×16 leaf nodes.

LANL Impact. The LANL meteor impact simulation [PST∗16]
uses the xRage code [GWC∗08] and varies heavily over time. We
use snapshot t = 46,112 of the ªtemperature in electronvolt (tev)º
field variable. The AMR grid is challenging for approaches like
ExaBrick, which generate lots of single cell bricks for this data
set (see the discussion in [ZWS∗22a] on challenges with min/max
range computation).
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(a) (b) (c) (d)
Figure 5: Data sets used for the evaluation. (a) TAC Molecular Cloud, (b) LANL Impact (t=46,112), (c) NASA Landing Gear, (d) NASA

Exajet. Top-left (a-d): direct volume rendering. Bottom-right (a-d): voxels as blue/white checkers, unstructured stitching elements in red.

reference method (regular dual mesh) our method - gridlets w/ boundary stitching
unstructured elements unstructured stitching elements gridlets

model surf tris verts pyrs wedges hexes Σ elems verts pyrs wedges hexes Σ elems gridlets full cells empty cells

TAC Molecular Cloud n/a 82 M 1.3 M 2.5 M 79.8 M 83.6 M 6.5 M 1.3 M 2.5 M 1.4 M 5.2 M 163 K 112 M 72.0 K
LANL Meteor Impact n/a 283 M 4.2 M 6.8 M 278 M 289 M 20.5 M 4.2 M 6.8 M 5.8 M 16.8 M 671 K 399 M 22.1 M
NASA Landing Gear 5.56 M 262 M 2.4 M 4.4 M 259 M 266 M 11.3 M 2.4 M 4.4 M 2.3 M 9.1 M 512 K 366 M 90.1 K
NASA Exajet 22.1 M 656 M 2.5 M 4.1 M 652 M 659 M 12.6 M 2.5 M 4.1 M 3.5 M 10.1 M 1.37 M 931 M 13.7 M

Table 1: Statistics for our data sets, and how that translates to a regular dual mesh solely composed of unstructured elements vs. our

representation using gridlets in terms of element/cell count.

NASA Landing Gear. NASA’s landing gear is a large block-
structured AMR data set generated with Chombo [CGL∗00]. The
data set suffers severely from the ªteapot in a stadiumº problem
(see the discussion in [ZWS∗22b]). It also comes with a surface
mesh consisting of 5.56 M triangles.

NASA Exajet. With over 656 M cells, Exajet by NASA is our
largest data set. Exajet is an octree-AMR data set and was simu-
lated with PowerFLOW [Exa98]. We visualize the magnitude of
the derived Lambda2 vorticity field. The data set includes a highly
detailed surface mesh consisting of 22.1 M triangles.

Our intention is to cover a wide range of data sets that cap-
ture different characteristics; e.g., we expect block-structured AMR
data sets to contain fewer boundary stitching elements and thus
more perfect cubes than tree-based AMR. The complex spatial ar-
rangement of LANL Impact and Exajet results in magnitudes more
empty gridlet cells than the other two data sets (cf. Table 1); it will
be interesting to explore if this is as challenging for our renderer as
the single cell bricks are for ExaBrick [ZWS∗22a].

6.2. Comparison to Existing Methods

We compare our method against a number of state-of-the-art un-
structured mesh samplers. The sampler by Wald et al. [WUM∗19]
serves as a reference that treats the dual cells as an unstructured
mesh and uses an OptiX sampling BVH without any optimiza-
tions. We implement this by using our optimized sampler, but
bypass the gridlet generation and treat cubes as ordinary hexa-
hedra. We expect that the memory overhead will be severe for
the larger data sets. While software systems or middleware like
VTK/ParaView [AGL05] or VisIt [Chi12] use rasterization ap-
proaches, cell-projection, etc., to render unstructured meshes, and
shared-face data structures will replace the BVH, we believe their
memory requirements to be on a similar order as our reference.

Wald et al.’s [WMZ22] sampler represents what we consider to
be the state-of-the-art for sampling very large unstructured meshes
such as NASA’s Mars Lander on GPUs. It comprises a combination
of several optimizations: multi-branching BVH with a branching
factor of eight children per node obtained by collapsing an initial
binary BVH; multi-node encoding with 16-bit quantization for the
node bounding box; and a tree optimization that collapses all sub-
trees with at least eight leaves into what the authors call a multi-leaf,
which is itself realized using an OptiX BVH.

Morrical et al.’s [MSG∗22] sampler also employs memory opti-
mizations, but primarily focuses on build performance. It first sorts
the elements on a Hilbert curve and then trivially groups N consecu-
tive primitives into what the authors call leaf clusters. The choice of
N can have a huge impact on performance, because the intersection
test performs a linear search over the primitives. For our tests, we
set N = 4. The authors also reindex the mesh, which allows them
to use element indices with fewer bytes. We include this sampler
because it deliberately trades sampling for build performance.

All samplers discussed so farÐincluding oursÐwill produce
the same images. For Wald et al.’s [WMZ22] and Morri-
cal et al.’s [MSG∗22] we use CUDA and OptiX 7 implementations
provided by the authors; the sampler by Wald et al. originally used
a planar intersection test that can produce artifacts. We therefore
augmented all samplers to use the bilinear patch intersection test to
sample general pyramids, wedges, and hexahedra.

We also compare against Wald et al.’s ExaBrick [WZU∗21],
which is optimized for AMR rendering, but uses the original and
not the dual mesh. This method does not need to sample individ-
ual unstructured elements, nor does it require Newton-Raphson re-
finement for bilinear faces. We expect sampling performance to be
unrivaled because even the boundary cells are voxels. This sampler
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Figure 6: Gridlet construction time (sec.) per refinement level.

Reference Ours
Model Perfect cubes Gridlets+voxels Compression rate

TAC Molecular Cloud 3.46 GB 432 MB 1 : 8.2
LANL Impact 12.0 GB 1.59 GB 1 : 7.5
NASA Landing Gear 11.4 GB 1.38 GB 1 : 8.3
NASA Exajet 28.9 GB 3.56 GB 1 : 8.1

Table 2: Compression rate (cubes/voxels only), based on data from

Table 1, counting the vertices bound in perfect cubes, vs. gridlets of

size 83 and data layouts using 16 byte / vertex+scalar, 8× 4 bytes

/ hexahedron, 32 byte / gridlet, and 4 byte / voxel.

will generate slightly different results than the others because of the
different reconstruction algorithm.

We integrated all four samplers into our framework. All samplers
use a min/max grid to obtain majorants (cf. Section 5.2). The un-
structured element samplersÐincluding oursÐuse the exact same
CUDA routines to build the grid. Gridlets are special elements that
are projected to the grid cell by cell. For ExaBrick we use the com-
bination ªactive brick regions for sampling and grid+DDA majo-
rant traversalº, as described by Zellmann et al. [ZWS∗22b]; we
project the bounding box of each AMR cell’s integration domain
onto the grid to compute min/max values and majorants. The result
of that is comparable to, yet not exactly the same as the dual mesh
majorants. With this setup, we can create equivalent images using
all five methods and directly compare their performance.

6.3. Gridlet Construction Time

We use a naïve CPU implementation of Algorithm 1 that is single-
threaded and uses a C++ std::map for the macrocells. We made
several design choices that favor simplicity over performance, so
that our results are dominated by file I/O and unoptimized write
accesses. In Fig. 6 we report the total construction time per AMR
refinement level. We achieve between 50 seconds and six minutes
for the four data sets and are confident that future work on parallel
gridlet construction would allow for even higher rates.

6.4. Memory Consumption

To analyze GPU memory consumption, we first report the compres-
sion rate obtained by replacing all cubes with gridlets of 83 voxels
(93 scalars) in Table 2. Encouragingly, the compression rate is on
the order of 1 : 8 for all our data sets. For the more complex LANL

Impact and NASA Exajet data sets, we observe compression rates
that are slightly lower, yet still on the same order.

More detailed results can be found in Table 3. We report results
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(b) LANL Impact (t=46,112)
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(d) NASA Exajet
Figure 7: Rendering performance vs. number of uelem and gridlet

samples, measured over a 50 position spherical camera orbit.

for manually summing all the data in buffers (ªdataº), but exclud-
ing acceleration data structures, framebuffers, min/max grids, ma-
jorants, etc. as a theoretical metric. We also report peak memory
consumption (ªpeakº) obtained via sampling with the nvidia-
smi tool; the ªtotalº benchmark presents what nvidia-smi re-
ports during rendering, after all acceleration data structures have
been fully built.

Our data structure easily beats all the unstructured mesh sam-
plers in GPU memory. The reference method runs out of mem-
ory allocating storage buffers for OptiX BVHs for all but the TAC

Molecular Cloud data sets. Only Wald et al.’s sampler [WMZ22]
can accommodate all four data sets, but still consumes far more
memory than our equivalent representation with gridlet compres-
sion. All the benchmarks but Morrical et al.’s [MSG∗22] assume
their maximum memory consumption when building OptiX BVHs.
Morrical’s peaks out during meshlet generation, the reason for
which being that Morrical’s is the only sampler where the whole
construction happens on the GPU.

Another interesting observation is that we beat ExaBrick in peak
memory consumption for the two complex data sets LANL Impact

(2.3× better) and NASA Exajet (1.9× better). The root cause of this
is that a BVH over gridlets is per construction more shallow than
a BVH over single cell bricks (or the even finer ªactive brick over-
lap regionsº, cf. [ZWS∗22a]), which also seems to positively affect
temporary memory consumption during BVH builds. This is en-
couraging because to build OptiX BVHs the memory buffers need
to be on the device and cannot reside in host or managed memory.
This means that we can render large data sets on lower-end GPUs
than it was possible with ExaBrick.

6.5. Rendering Performance

We compare the samplers’ performance in Table 4 using the rep-
resentative views shown in Fig. 5 and report frames per second
for single convergence frames. We use multi-scattering with an
isotropic phase function, a dome light with uniform intensity, and
render viewports of 1024× 1024 pixels. We observe that our per-
formance is superior to that of the other unstructured mesh ren-
derers. As expected, we cannot outperform ExaBrick in sampling
performance, yet we note that the performance is of the same or-
der. We also report performance numbers in Fig. 7 measured over
50 positions of a spherical camera orbit and the same viewport size
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Reference Quick Clusters [MSG∗22] Compressed [WMZ22] ExaBrick [ZWS∗22b] Ours
Model data peak total data peak total data peak total data peak total data peak total

TAC Molecular Cloud 3.71 17.7 6.83 2.65 6.40 5.17 3.14 4.62 4.62 0.34 1.70 1.60 0.68 2.36 2.16
LANL Meteor Impact 12.8 (oom) (oom) 9.15 24.6 14.4 10.9 15.6 13.0 2.93 12.1 5.89 2.39 5.15 4.24
NASA Landing Gear 11.9 (oom) (oom) 8.49 22.7 16.3 10.1 15.4 15.4 1.03 5.64 5.59 1.85 7.20 6.72
NASA Exajet 30.5 (oom) (oom) (oom) (oom) (oom) 25.6 36.8 33.8 5.92 21.0 12.6 5.09 11.0 10.5

Table 3: Memory performance benchmark, in GB. We manually compute GPU memory (data), and measure peak and total memory (i.e., after

OptiX BVH construction) using nvidia-smi. (oom means the process ran out of GPU memory before we could perform the measurement.)

Ref. Quick Clusters Compressed ExaBrick Ours
Model [MSG∗22] [WMZ22] [ZWS∗22b]

TAC Mol. Cloud 10.3 2.29 4.63 22.7 18.7
LANL Impact Ð 0.60 3.04 6.09 3.86
NASA Lan. Gear Ð 0.52 0.66 3.26 1.48
NASA Exajet Ð Ð 1.58 3.67 2.09

Table 4: Rendering performance, multi-scattered path tracing

(cf. Fig. 5), in frames per second, for a single convergence frame.
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Figure 8: Rendering performance comparison, for bilinear vs. a

less accurate planar face stitching element intersection test.

and rendering modalities. We put the respective rendering times in
contrast to the absolute number of unstructured stitching elements
vs. gridlets sampled. This benchmark also provides a render time
envelope for a typical explorative session.

Unstructured mesh renderers often only support elements with
planar faces, while the dual mesh contains bilinear elements. Using
a planar intersection test instead of the more accurate one results
in subtle rendering artifacts, but might better reflect what integra-
tion with an off-the-shelf renderer would look like. We present a
comparison in Fig. 8 using the same spherical camera orbit, for our
renderer, vs. a variant that uses a planar face intersection test for the
stitching elements, for the 50 spherical camera orbits from before.

7. Summary and Discussion

We presented an approach that seamlessly extends unstructured
mesh renderers to support very large AMR data sets. Although our
method might seem like an improvement for unstructured meshes,
it is still specific to AMR, because generally unstructured meshes
often do not contain any perfect hexehedra at all. We therefore by

design opted for our gridlet type to be an extension to unstructured
renderers. Rendering unstructured meshes without cubes has no
additional runtime overhead because of the separate OptiX geome-
tries for gridlets and other element types. Besides, this also applies
to rasterization-based renderers as found in VTK or VisIt, where
using a separate gridlet shader would result in marginal, if any over-
head compared to an implementation without gridlets.

Gridlets are similar to ExaBrick’s representation of same-level
cells. ExaBrick’s active brick regions however can generate many
small or single-cell boxes for complex data sets, while conversely,
gridlets contain empty cells and duplicate scalars. One might as-
sume that ExaBrick should outperform gridlets in memory because
of that. However, we found that whatever memory savings are re-
alized by ExaBrick avoiding duplicates, our gridlets make up for
in BVH memory size, which also affects peak memory consump-
tion. This actually allows us to render the larger data sets on GPUs
with less memory. In the future, it would be interesting to replace
ExaBrick’s internal data structure with gridlets. While ExaBrick

still slightly outperforms our dual mesh sampler in rendering time,
our tests indicate that this is not due to the shallower BVH, but due
to the additional element types we have to test against.

7.1. Sampling on the Original vs. the Dual Mesh

Our data structure is optimized for efficient dual mesh sampling.
We now discuss why one would prefer this to sampling on the
original AMR grid in the first place. One motivation from a soft-
ware engineer’s perspective is that our method easily integrates
with existing unstructured renders. Another reason for sampling on
the dual mesh is its interpolation property. The basis [WBUK17]
and octant [WWW∗19] methods do not have that property. Exact
reconstruction at the known data points is desirable in scientific
visualization; deviations can impact both color and shape of re-
constructed features. While Wang et al. [WMU∗20] showcase ex-
amples where stitching reduces artifacts, we note that all the re-
construction methods discussed in this paperÐincluding the dual
mesh interpolatorÐare C0 continuous so that, e.g., gradient-based
normals can exhibit objectionable artifacts at level boundaries. The
dual mesh interpolator represents the data more faithfully than the
other methods, but does not necessarily reduce artifacts.

8. Conclusion

In this paper we contributed an efficient sampler for AMR dual
mesh rendering that adds to the current state of the art in large-
scale volume rendering. The sampler optimizes for GPU memory
consumption, but also outperforms other unstructured mesh render-
ers on volume path tracing. A major advantage over its competitors
is that it seamlessly integrates with existing unstructured mesh ren-
derers by just adding an additional element type. That allows us
to render the same large-scale AMR simulation data sets on GPUs
that could previously only be rendered on CPUs, or with highly
optimized data structures that use less faithful reconstruction meth-
ods. Our method presents a very versatile way to render such data
on GPUs, and while the rendering performance is on the same or-
der, yet a little lower than those highly optimized data structures,
we beat them in peak memory performance by a significant margin.
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